18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The mechanism of plant gall induction by insects: revealing clues, facts, and consequences in a cross-kingdom complex interaction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract: Galls are defined as modifications of the normal developmental design of plants, produced by a specific reaction to the presence and activity of a foreign organism. Although different organisms have the ability to induce galls in plants, insect-induced galls are the most elaborate and diverse. Some hypotheses have been proposed to explain the induction mechanism of plant galls by insects. The most general hypothesis suggests that gall formation is triggered by the action of chemical substances secreted by the gall inducer, including plant growth regulators such as auxins, cytokinins, indole-3-acetic acid (IAA), and other types of compounds. However, the mode of action of these chemical substances and the general mechanism by which the insect could control and manipulate plant development and physiology is still not known. Moreover, resulting from the complexity of the induction process and development of insect galls, the chemical hypothesis is very unlikely a complete explanation of the mechanism of induction and morphogenesis of these structures. Previous and new highlights of insect gall systems with emphasis on the induction process were analyzed on the basis of the author’s integrated point of view to propose a different perspective of gall induction, which is provided in this article. Due to the extraordinary diversity of shapes, colors, and complex structures present in insect galls, they are useful models for studying how form and structure are determined at the molecular level in plant systems. Furthermore, plant galls constitute an important source of material for the study and exploration of new chemical substances of interest to humans, due to their physiological and adaptive characteristics. Considering the finely tuned control of morphogenesis, structural complexity, and biochemical regulation of plant galls induced by insects, it is proposed that an induction mechanism mediated by the insertion of exogenous genetic elements into the genome of plant gall cells could be involved in the formation of this kind of structure through an endosymbiotic bacterium.

          Translated abstract

          Resumen Las agallas se definen como modificaciones del diseño y desarrollo normal de las plantas debido a una reacción específica a la presencia y actividad de un organismo foráneo. Aunque diferentes grupos de organismos tienen la habilidad de inducir agallas en plantas, las agallas inducidas por insectos son las más elaboradas y diversas. Algunas hipótesis han sido propuestas para explicar el mecanismo de inducción de las agallas de insectos. La hipótesis más general sugiere que la formación de las agallas es disparada por la acción de sustancias químicas secretadas por el insecto inductor, incluyendo reguladores de plantas como auxinas, citoquininas, ácido-3-indolacético (AIA) o bien otros tipos de compuestos. No obstante, el modo de acción de estas sustancias químicas y el mecanismo general por medio del cual el insecto podría controlar y manipular el desarrollo y fisiología de la planta es aún desconocido. Más aún, como resultado de la complejidad del proceso de inducción y desarrollo de las agallas de plantas inducidas por insectos, la hipótesis química es una explicación insuficiente e incompleta en relación con el mecanismo de inducción y morfogénesis de estas estructuras. Previas y nuevas evidencias relacionadas con el sistema de agallas de insectos, con énfasis en el proceso de inducción, fueron analizadas desde un punto de vista integral del autor para proponer en este artículo una perspectiva diferente sobre la inducción de este tipo de estructuras. Debido a la extraordinaria diversidad de formas, colores y estructuras complejas presentes en las agallas de insectos, las mismas constituyen modelos útiles para estudiar cómo la forma y la estructura son determinadas a nivel molecular en los sistemas vegetales. Además, las agallas de plantas son un importante origen de material para el estudio y exploración de nuevas sustancias químicas de interés humano, debido a las características fisiológicas y adaptativas que presentan. Considerando el control fino del proceso de morfogénesis, regulación bioquímica y complejidad estructural de las agallas de insectos, se propone que un mecanismo de inducción mediado por la inserción de elementos genéticos exógenos dentro del genoma de las células de la planta que forman la agalla podría estar involucrado en la formación de este tipo de estructuras, vía una bacteria endosimbiótica.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer

          The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs) encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria—and also mobile genetic elements and bacteriophages—form a reservoir of ARGs (the resistome) from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT). HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of phytohormones in insect-specific plant reactions.

            The capacity to perceive and respond is integral to biological immune systems, but to what extent can plants specifically recognize and respond to insects? Recent findings suggest that plants possess surveillance systems that are able to detect general patterns of cellular damage as well as highly specific herbivore-associated cues. The jasmonate (JA) pathway has emerged as the major signaling cassette that integrates information perceived at the plant-insect interface into broad-spectrum defense responses. Specificity can be achieved via JA-independent processes and spatio-temporal changes of JA-modulating hormones, including ethylene (ET), salicylic acid (SA), abscisic acid (ABA), auxin, cytokinins (CK), brassinosteroids (BR) and gibberellins (GB). The identification of receptors and ligands and an integrative view of hormone-mediated response systems are crucial to understand specificity in plant immunity to herbivores. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host

              Background Intracellular Wolbachia bacteria are obligate, maternally-inherited, endosymbionts found frequently in insects and other invertebrates. The success of Wolbachia can be attributed in part to an ability to alter host reproduction via mechanisms including cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. Despite substantial scientific effort, the molecular mechanisms underlying the Wolbachia/host interaction are unknown. Results Here, an in vitro Wolbachia infection was generated in the Drosophila S2 cell line, and transcription profiles of infected and uninfected cells were compared by microarray. Differentially-expressed patterns related to reproduction, immune response and heat stress response are observed, including multiple genes that have been previously reported to be involved in the Wolbachia/host interaction. Subsequent in vivo characterization of differentially-expressed products in gonads demonstrates that Angiotensin Converting Enzyme (Ance) varies between Wolbachia infected and uninfected flies and that the variation occurs in a sex-specific manner. Consistent with expectations for the conserved CI mechanism, the observed Ance expression pattern is repeatable in different Drosophila species and with different Wolbachia types. To examine Ance involvement in the CI phenotype, compatible and incompatible crosses of Ance mutant flies were conducted. Significant differences are observed in the egg hatch rate resulting from incompatible crosses, providing support for additional experiments examining for an interaction of Ance with the CI mechanism. Conclusion Wolbachia infection is shown to affect the expression of multiple host genes, including Ance. Evidence for potential Ance involvement in the CI mechanism is described, including the prior report of Ance in spermatid differentiation, Wolbachia-induced sex-specific effects on Ance expression and an Ance mutation effect on CI levels. The results support the use of Wolbachia infected cell cultures as an appropriate model for predicting in vivo host/Wolbachia interactions.
                Bookmark

                Author and article information

                Journal
                rbt
                Revista de Biología Tropical
                Rev. biol. trop
                Universidad de Costa Rica (San José, San José, Costa Rica )
                0034-7744
                0034-7744
                December 2019
                : 67
                : 6
                : 1359-1382
                Affiliations
                [1] orgnameEscuela de Ciencias Naturales y Exactas orgdiv1Campus Tecnológico Local San Carlos orgdiv2Instituto Tecnológico de Costa Rica Costa Rica
                Article
                S0034-77442019000601359 S0034-7744(19)06700601359
                10.15517/rbt.v67i6.33984
                2261622d-cee1-4588-bfd0-b5e88c5e2f81

                This work is licensed under a Creative Commons Attribution 3.0 International License.

                History
                : 07 November 2018
                : 23 September 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 165, Pages: 24
                Product

                SciELO Costa Rica

                Categories
                Special Article

                insect galls,inductor insect,induction mechanism,plant morphogenesis,effectors,agallas de insectos,insecto inductor,mecanismo de inducción,morfogénesis vegetal,efectores

                Comments

                Comment on this article