4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Symbiotic bacteria of the gall-inducing mite Fragariocoptes setiger (Eriophyoidea) and phylogenomic resolution of the eriophyoid position among Acari

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eriophyoid mites represent a hyperdiverse, phytophagous lineage with an unclear phylogenetic position. These mites have succeeded in colonizing nearly every seed plant species, and this evolutionary success was in part due to the mites' ability to induce galls in plants. A gall is a unique niche that provides the inducer of this modification with vital resources. The exact mechanism of gall formation is still not understood, even as to whether it is endogenic (mites directly cause galls) or exogenic (symbiotic microorganisms are involved). Here we (i) investigate the phylogenetic affinities of eriophyoids and (ii) use comparative metagenomics to test the hypothesis that the endosymbionts of eriophyoid mites are involved in gall formation. Our phylogenomic analysis robustly inferred eriophyoids as closely related to Nematalycidae, a group of deep-soil mites belonging to Endeostigmata. Our comparative metagenomics, fluorescence in situ hybridization, and electron microscopy experiments identified two candidate endosymbiotic bacteria shared across samples, however, it is unlikely that they are gall inducers (morphotype1: novel Wolbachia, morphotype2: possibly Agrobacterium tumefaciens) . We also detected an array of plant pathogens associated with galls that may be vectored by the mites, and we determined a mite pathogenic virus ( Betabaculovirus) that could be tested for using in biocontrol of agricultural pest mites.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

          Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast and sensitive protein alignment using DIAMOND.

            The alignment of sequencing reads against a protein reference database is a major computational bottleneck in metagenomics and data-intensive evolutionary projects. Although recent tools offer improved performance over the gold standard BLASTX, they exhibit only a modest speedup or low sensitivity. We introduce DIAMOND, an open-source algorithm based on double indexing that is 20,000 times faster than BLASTX on short reads and has a similar degree of sensitivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TBtools - an integrative toolkit developed for interactive analyses of big biological data

              The rapid development of high-throughput sequencing techniques has led biology into the big-data era. Data analyses using various bioinformatics tools rely on programming and command-line environments, which are challenging and time-consuming for most wet-lab biologists. Here, we present TBtools (a Toolkit for Biologists integrating various biological data-handling tools), a stand-alone software with a user-friendly interface. The toolkit incorporates over 130 functions, which are designed to meet the increasing demand for big-data analyses, ranging from bulk sequence processing to interactive data visualization. A wide variety of graphs can be prepared in TBtools using a new plotting engine ("JIGplot") developed to maximize their interactive ability; this engine allows quick point-and-click modification of almost every graphic feature. TBtools is platform-independent software that can be run under all operating systems with Java Runtime Environment 1.6 or newer. It is freely available to non-commercial users at https://github.com/CJ-Chen/TBtools/releases.
                Bookmark

                Author and article information

                Contributors
                pklimov@umich.edu
                f.chetverikov@spbu.ru
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 March 2022
                9 March 2022
                2022
                : 12
                : 3811
                Affiliations
                [1 ]GRID grid.446209.d, ISNI 0000 0000 9203 3563, X-BIO Institute, , Tyumen State University, ; Tyumen, Russia 625003
                [2 ]GRID grid.15447.33, ISNI 0000 0001 2289 6897, Saint-Petersburg State University, ; St. Petersburg, Russia 199034
                [3 ]GRID grid.421466.3, ISNI 0000 0004 0627 8572, Florida Department of Agriculture and Consumer Services, ; Gainesville, FL USA
                Article
                7535
                10.1038/s41598-022-07535-3
                8907322
                35264574
                f25d953e-7f0b-48e1-929c-b8ddcee5f717
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 August 2021
                : 17 February 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100012190, Ministry of Science and Higher Education of the Russian Federation;
                Award ID: 075-15-2020-922
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                entomology,metagenomics
                Uncategorized
                entomology, metagenomics

                Comments

                Comment on this article