22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRPA1/NOX in the soma of trigeminal ganglion neurons mediates migraine-related pain of glyceryl trinitrate in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glyceryl trinitrate administration causes prolonged mechanical allodynia in rodents, which correlates temporally with delayed migraine attacks in patients. Marone et al. show that the allodynia is mediated by TRPA1 activation in cell bodies of trigeminal neurons and ensuing oxidative stress. This neuronal pathway may be of relevance to migraine-like headaches.

          Abstract

          Glyceryl trinitrate is administered as a provocative test for migraine pain. Glyceryl trinitrate causes prolonged mechanical allodynia in rodents, which temporally correlates with delayed glyceryl trinitrate-evoked migraine attacks in patients. However, the underlying mechanism of the allodynia evoked by glyceryl trinitrate is unknown. The proalgesic transient receptor potential ankyrin 1 (TRPA1) channel, expressed by trigeminal nociceptors, is sensitive to oxidative stress and is targeted by nitric oxide or its by-products. Herein, we explored the role of TRPA1 in glyceryl trinitrate-evoked allodynia. Systemic administration of glyceryl trinitrate elicited in the mouse periorbital area an early and transient vasodilatation and a delayed and prolonged mechanical allodynia. The systemic, intrathecal or local administration of selective enzyme inhibitors revealed that nitric oxide, liberated from the parent drug by aldehyde dehydrogenase 2 (ALDH2), initiates but does not maintain allodynia. The central and the final phases of allodynia were respectively associated with generation of reactive oxygen and carbonyl species within the trigeminal ganglion. Allodynia was absent in TRPA1-deficient mice and was reversed by TRPA1 antagonists. Knockdown of neuronal TRPA1 by intrathecally administered antisense oligonucleotide and selective deletion of TRPA1 from sensory neurons in Advillin-Cre; Trpa1 fl/fl mice revealed that nitric oxide-dependent oxidative and carbonylic stress generation is due to TRPA1 stimulation, and resultant NADPH oxidase 1 (NOX1) and NOX2 activation in the soma of trigeminal ganglion neurons. Early periorbital vasodilatation evoked by glyceryl trinitrate was attenuated by ALDH2 inhibition but was unaffected by TRPA1 blockade. Antagonists of the calcitonin gene-related peptide receptor did not affect the vasodilatation but partially inhibited allodynia. Thus, although both periorbital allodynia and vasodilatation evoked by glyceryl trinitrate are initiated by nitric oxide, they are temporally and mechanistically distinct. While vasodilatation is due to a direct nitric oxide action in the vascular smooth muscle, allodynia is a neuronal phenomenon mediated by TRPA1 activation and ensuing oxidative stress. The autocrine pathway, sustained by TRPA1 and NOX1/2 within neuronal cell bodies of trigeminal ganglia, may sensitize meningeal nociceptors and second order trigeminal neurons to elicit periorbital allodynia, and could be of relevance for migraine-like headaches evoked by glyceryl trinitrate in humans.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress.

          Transient receptor potential A1 (TRPA1) is expressed in a subset of nociceptive sensory neurons where it acts as a sensor for environmental irritants, including acrolein, and some pungent plant ingredients such as allyl isothiocyanate and cinnamaldehyde. These exogenous compounds activate TRPA1 by covalent modification of cysteine residues. We have used electrophysiological methods and measurements of intracellular calcium concentration ([Ca(2+)](i)) to show that TRPA1 is activated by several classes of endogenous thiol-reactive molecules. TRPA1 was activated by hydrogen peroxide (H(2)O(2); EC(50), 230 microM), by endogenously occurring alkenyl aldehydes (EC(50): 4-hydroxynonenal 19.9 microM, 4-oxo-nonenal 1.9 microM, 4-hydroxyhexenal 38.9 microM) and by the cyclopentenone prostaglandin, 15-deoxy-delta(12,14)-prostaglandin J(2) (15d-PGJ(2), EC(50): 5.6 microM). The effect of H(2)O(2) was reversed by treatment with dithiothreitol indicating that H(2)O(2) acts by promoting the formation of disulfide bonds whereas the actions of the alkenyl aldehydes and 15d-PGJ(2) were not reversed, suggesting that these agents form Michael adducts. H(2)O(2) and the naturally occurring alkenyl aldehydes and 15d-PGJ(2) acted on a subset of isolated rat and mouse sensory neurons [approximately 25% of rat dorsal root ganglion (DRG) and approximately 50% of nodose ganglion neurons] to evoke a depolarizing inward current and an increase in [Ca(2+)](i) in TRPA1 expressing neurons. The abilities of H(2)O(2), alkenyl aldehydes and 15d-PGJ(2) to raise [Ca(2+)](i) in mouse DRG neurons were greatly reduced in neurons from trpa1(-/-) mice. Furthermore, intraplantar injection of either H(2)O(2) or 15d-PGJ2 evoked a nocifensive/pain response in wild-type mice, but not in trpa1(-/-) mice. These data demonstrate that multiple agents produced during episodes of oxidative stress can activate TRPA1 expressed in sensory neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Injured sensory neuron-derived CSF1 induces microglia proliferation and DAP12-dependent pain

            SUMMARY Although microglia are implicated in nerve injury-induced neuropathic pain, how injured sensory neurons engage microglia is unclear. Here we demonstrate that peripheral nerve injury induces de novo expression of colony-stimulating factor 1 (CSF1) in injured sensory neurons. The CSF1 is transported to the spinal cord where it targets the microglial CSF1 receptor (CSF1R). Cre-mediated sensory neuron deletion of Csf1 completely prevented nerve injury-induced mechanical hypersensitivity and reduced microglia activation and proliferation. In contrast, intrathecal injection of CSF1 induces mechanical hypersensitivity and microglial proliferation. Nerve injury also upregulated CSF1 in motoneurons, where it is required for ventral horn microglial activation and proliferation. Downstream of CSF1R, we found that the microglial membrane adapter protein DAP12 is required for both nerve injury- and intrathecal CSF1-induced upregulation of pain-related microglial genes and the ensuing pain, but not for microglia proliferation. Thus, both CSF1 and DAP12 are potential targets for the pharmacotherapy of neuropathic pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An association between migraine and cutaneous allodynia.

              Recent animal studies on the mechanism of migraine show that intracranial pain is accompanied by increased periorbital skin sensitivity. These findings suggest that the pathophysiology of migraine involves not only irritation of meningeal perivascular pain fibers but also a transient increase in the responsiveness (ie, sensitization) of central pain neurons that process information arising from intracranial structures and skin. The purpose of this study was to determine whether the increased skin sensitivity observed in animal also develops in humans during migraine attacks. Repeated measurements of mechanical and thermal pain thresholds of periorbital and forearm skin areas in the absence of, and during, migraine attacks enabled us to determine the occurrence of cutaneous allodynia during migraine. Cutaneous allodynia is pain resulting from a nonnoxious stimulus to normal skin. In 79% of the patients, migraine was associated with cutaneous allodynia as defined, and in 21% of the patients it was not. The cutaneous allodynia occurred either solely within the referred pain area on the ipsilateral head, or within and outside the ipsilateral head. Cutaneous allodynia in certain well-defined regions of the skin during migraine is an as yet unreported neurological finding that points to hyperexcitability of a specific central pain pathway that subserves intracranial sensation.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                brainj
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                August 2018
                06 July 2018
                06 July 2018
                : 141
                : 8
                : 2312-2328
                Affiliations
                [1 ] Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
                [2 ] Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
                [3 ] Departments of Surgery and Pharmacology, Columbia University in the City of New York, USA
                Author notes
                Correspondence to: Pierangelo Geppetti, MD Department of Health Sciences University of Florence Viale Pieraccini 6, 50139 Florence, Italy E-mail: geppetti@ 123456unifi.it

                Ilaria Maddalena Marone, Francesco De Logu and Romina Nassini authors contributed equally to this work.

                Article
                awy177
                10.1093/brain/awy177
                6061846
                29985973
                19a7e1f8-c07e-4512-a5a7-a407a78d1ad1
                © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 24 October 2017
                : 26 April 2018
                : 13 May 2018
                Page count
                Pages: 17
                Funding
                Funded by: Istituto Toscano Tumori 10.13039/501100003980
                Funded by: ITT 10.13039/501100003980
                Award ID: 2014
                Funded by: Regione Toscana 10.13039/501100009888
                Award ID: Nutraceuticals 2014
                Funded by: Ministry for University and Scientific Research
                Award ID: PRIN 201532AHAE_003
                Funded by: NIH 10.13039/100000002
                Award ID: NS102722
                Award ID: DE026806
                Categories
                Original Articles

                Neurosciences
                migraine,oxidative stress,ion channels,trigeminal headache: experimental models
                Neurosciences
                migraine, oxidative stress, ion channels, trigeminal headache: experimental models

                Comments

                Comment on this article