25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment

      , , , , ,
      Journal of Ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The Bioperl toolkit: Perl modules for the life sciences.

          The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species.

            Ecologists are increasingly adopting an evolutionary perspective, and in recent years, the idea that closely related species are ecologically similar has become widespread. In this regard, phylogenetic signal must be distinguished from phylogenetic niche conservatism. Phylogenetic niche conservatism results when closely related species are more ecologically similar that would be expected based on their phylogenetic relationships; its occurrence suggests that some process is constraining divergence among closely related species. In contrast, phylogenetic signal refers to the situation in which ecological similarity between species is related to phylogenetic relatedness; this is the expected outcome of Brownian motion divergence and thus is necessary, but not sufficient, evidence for the existence of phylogenetic niche conservatism. Although many workers consider phylogenetic niche conservatism to be common, a review of case studies indicates that ecological and phylogenetic similarities often are not related. Consequently, ecologists should not assume that phylogenetic niche conservatism exists, but rather should empirically examine the extent to which it occurs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Opposing effects of competitive exclusion on the phylogenetic structure of communities.

              Though many processes are involved in determining which species coexist and assemble into communities, competition is among the best studied. One hypothesis about competition's contribution to community assembly is that more closely related species are less likely to coexist. Though empirical evidence for this hypothesis is mixed, it remains a common assumption in certain phylogenetic approaches for inferring the effects of environmental filtering and competitive exclusion. Here, we relate modern coexistence theory to phylogenetic community assembly approaches to refine expectations for how species relatedness influences the outcome of competition. We argue that two types of species differences determine competitive exclusion with opposing effects on relatedness patterns. Importantly, this means that competition can sometimes eliminate more different and less related taxa, even when the traits underlying the relevant species differences are phylogenetically conserved. Our argument leads to a reinterpretation of the assembly processes inferred from community phylogenetic structure.
                Bookmark

                Author and article information

                Journal
                Journal of Ecology
                J Ecol
                Wiley-Blackwell
                00220477
                September 2014
                September 2014
                : 102
                : 5
                : 1288-1299
                Article
                10.1111/1365-2745.12271
                1881be7a-1cce-4004-bcc0-2fe4e4df65bb
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article