21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Physical-chemists, (micro)biologists, and ecologists need to conduct meaningful experiments to study the environmental risk of engineered nanomaterials with access to relevant mechanistic data across several spatial and temporal scales. Indoor aquatic mesocosms (60L) that can be tailored to virtually mimic any ecosystem appear as a particularly well-suited device. Here, this concept is illustrated by a pilot study aimed at assessing the distribution of a CeO 2-based nanomaterial within our system at low concentration (1.5 mg/L). Physico-chemical as well as microbiological parameters took two weeks to equilibrate. These parameters were found to be reproducible across the 9-mesocosm setup over a 45-day period of time. Recovery mass balances of 115 ± 18% and 60 ± 30% of the Ce were obtained for the pulse dosing and the chronic dosing, respectively. This demonstrated the relevance of our experimental approach that allows for adequately monitoring the fate and impact of a given nanomaterial.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.

          Nanomaterial properties differ from those bulk materials of the same composition, allowing them to execute novel activities. A possible downside of these capabilities is harmful interactions with biological systems, with the potential to generate toxicity. An approach to assess the safety of nanomaterials is urgently required. We compared the cellular effects of ambient ultrafine particles with manufactured titanium dioxide (TiO2), carbon black, fullerol, and polystyrene (PS) nanoparticles (NPs). The study was conducted in a phagocytic cell line (RAW 264.7) that is representative of a lung target for NPs. Physicochemical characterization of the NPs showed a dramatic change in their state of aggregation, dispersibility, and charge during transfer from a buffered aqueous solution to cell culture medium. Particles differed with respect to cellular uptake, subcellular localization, and ability to catalyze the production of reactive oxygen species (ROS) under biotic and abiotic conditions. Spontaneous ROS production was compared by using an ROS quencher (furfuryl alcohol) as well as an NADPH peroxidase bioelectrode platform. Among the particles tested, ambient ultrafine particles (UFPs) and cationic PS nanospheres were capable of inducing cellular ROS production, GSH depletion, and toxic oxidative stress. This toxicity involves mitochondrial injury through increased calcium uptake and structural organellar damage. Although active under abiotic conditions, TiO2 and fullerol did not induce toxic oxidative stress. While increased TNF-alpha production could be seen to accompany UFP-induced oxidant injury, cationic PS nanospheres induced mitochondrial damage and cell death without inflammation. In summary, we demonstrate that ROS generation and oxidative stress are a valid test paradigm to compare NP toxicity. Although not all materials have electronic configurations or surface properties to allow spontaneous ROS generation, particle interactions with cellular components are capable of generating oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective.

            The regulation of engineered nanoparticles requires a widely agreed definition of such particles. Nanoparticles are routinely defined as particles with sizes between about 1 and 100 nm that show properties that are not found in bulk samples of the same material. Here we argue that evidence for novel size-dependent properties alone, rather than particle size, should be the primary criterion in any definition of nanoparticles when making decisions about their regulation for environmental, health and safety reasons. We review the size-dependent properties of a variety of inorganic nanoparticles and find that particles larger than about 30 nm do not in general show properties that would require regulatory scrutiny beyond that required for their bulk counterparts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From ecotoxicology to nanoecotoxicology.

              For hazard assessment of NPs quantitative nanoecotoxicological data are required. The objective of this review was to evaluate the currently existing literature data on toxicity (L(E)C50 values) of synthetic NPs in environmentally relevant species in order to: (i) identify tentatively most harmful NPs and most sensitive organism groups, and (ii) to provide relevant ecotoxicological information for further risk assessment. The focus was set on selected synthetic NPs (nano TiO(2), nano ZnO, nano CuO, nano Ag, SWCNTs, MWCNs and C60-fullerenes) and organism groups representing main food-chain levels (bacteria, algae, crustaceans, ciliates, fish, yeasts and nematodes). Altogether 77 effect values were found, mostly for nano TiO(2) (31%), C60 (18%), nano ZnO (17%), nano Ag (13%), SWCNTs and nano CuO (both 9%). Only 3% of the available quantitative ecotoxicological information concerned MWCNTs. Organism-wise, 33% of the data concerned crustaceans, 27% bacteria, 14% algae and 13% fish. For all organism groups studied, solubility of CuO- and ZnO-NPs was a key factor in their aquatic toxicity. On the basis of the 34 median L(E)C50 values derived from 77 individual values, NPs were ranked according to their lowest median L(E)C50 value for the above described organism groups: the most harmful were nano Ag and nano ZnO that were classified "extremely toxic", (L(E)C50<0.1mg/l), followed by C60 fullerenes and nano CuO that were classified "very toxic", (L(E)C50 0.1-1mg/l). SWCNTs and MWCNTs were classified "toxic" (L(E)C50 1-10mg/l). Nano TiO(2) was classified as "harmful", (L(E)C50 10-100mg/l). Throughout, algae and crustaceans (daphnids) were most sensitive and thus probably most vulnerable organism groups in aquatic exposure to NPs. Very low L(E)C50 values should deserve thorough attention of environmental risk assessors for evaluation of the potential adverse effects of synthetic NPs on ecosystems. As the quantitative nanoecotoxicological data are still rare, further studies are needed.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                08 July 2014
                2014
                : 4
                : 5608
                Affiliations
                [1 ]CNRS, Aix-Marseille Université , CEREGE UM34, UMR 7330, 13545 Aix en Provence, France
                [2 ]International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University , Aix en Provence, France
                [3 ]Center for the Environmental Implications of NanoTechnology CEINT, Duke University , Durham, North Carolina 27707, USA
                [4 ]CNRS, Aix-Marseille Université , CEA Cadarache DSV/IBEB/SBVME, Lab Ecol Microb Rhizosphere & Environ Extrem (LEMiRE), UMR 7265, Saint Paul lez Durance, France
                [5 ]CNRS, Aix-Marseille Université, CNRS, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) , UMR 7263, Marseille, France
                Author notes
                Article
                srep05608
                10.1038/srep05608
                4085617
                25001877
                3ea1a8e1-16b9-4360-95f7-9437f1a3a875
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 20 February 2014
                : 12 June 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article