1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy

      , , , , , , ,
      Nano Letters
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d10738904e105">Chiral light-matter interactions as an emerging aspect of quantum optics enable exceptional physical phenomena and advanced applications in nanophotonics through the nanoscale exploitation of photon-emitter interactions. The chiral radiative properties of quantum emitters strongly depend on the photonic environment, which can be drastically altered by plasmonic nanostructures with a high local density of states (LDOS). Hence, precise knowledge of the chiral photonic environment is essential for manipulating the chirality of light-matter interactions, which requires high resolution chiral characterization techniques. In this work, chiral radiative LDOS distributions of single plasmonic nanostructures that directly govern the chiral radiative spontaneous decay of quantum emitters are imaged at the nanoscale by using cathodoluminescence nanoscopy, enabling precise and highly efficient control of chiral photon emission for chiroptical technologies. Radiative LDOS hot-spots with the chirality larger than 93% are obtained by properly designing chiral plasmonic modes of Au nanoantennas. After fabricating monolayered WSe2 nanodisks (NDs) at chiral radiative LDOS hot-spots and forming ND/Au hybrid nanostructures, the chiral radiative properties of WSe2 NDs are significantly modified, leading to chiral photoluminescence. Our experimental concept and method provide an effective way to characterize and manipulate chiral light-matter interactions at the nanoscale, facilitating future applications in chiral quantum nanophotonics such as single-photon sources and light emission devices. </p>

          Related collections

          Author and article information

          Journal
          Nano Letters
          Nano Lett.
          American Chemical Society (ACS)
          1530-6984
          1530-6992
          December 31 2018
          December 31 2018
          Article
          10.1021/acs.nanolett.8b03850
          30596507
          0ba3e227-8ddf-4f05-80ef-e0dda3891ca3
          © 2018
          History

          Comments

          Comment on this article