10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tailored mesoporous silica nanosystem with enhanced permeability of the blood–brain barrier to antagonize glioblastoma

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Herein, a tailored MSNs nanosystem modified by an RGD peptide has been rationally designed, synthesized and used as a carrier of anticancer agents to enhance its BBB permeability and anticancer efficacy to treat human brain glioma.

          Abstract

          Cancer-targeted drug delivery systems with permeability of the blood–brain barrier (BBB) have become of great interest for the rational design of high-efficiency anticancer agents. Herein, a tailored mesoporous silica nanoparticles (MSNs) nanosystem modified by RGD (arginine–glycine–aspartate) peptide was designed and tested for use as a carrier of anticancer agents, by using a novel organic selenium compound BSeC as a model molecule. As expected, the nanosystem (BSeC@MSNs-RGD) could effectively enhance the BBB permeability and the cellular uptake of BSeC in tumor cells. The internalized BSeC@MSNs-RGD triggered mitochondrial dysfunction and intracellular ROS overproduction, which subsequently activated the p53 and MAPKs pathways. Moreover, the nanosystem could inhibit the U87 tumor spheroids growth, significantly prolong the blood circulation time of the loaded drug in vivo and effectively reduce its in vivo toxicity. Taken together, this study provides a strategy for the rational design of a tailored nanomedicine with enhanced BBB permeability to treat human brain glioma.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.

          The protease responsible for the cleavage of poly(ADP-ribose) polymerase and necessary for apoptosis has been purified and characterized. This enzyme, named apopain, is composed of two subunits of relative molecular mass (M(r)) 17K and 12K that are derived from a common proenzyme identified as CPP32. This proenzyme is related to interleukin-1 beta-converting enzyme (ICE) and CED-3, the product of a gene required for programmed cell death in Caenorhabditis elegans. A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro, suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles.

            Selenium nanoparticles (SeNPs) have garnered a great deal of attention as potential cancer therapeutic payloads. However, the in vivo targeting drug delivery has been challenging. Herein, we describe the synthesis of tansferrin (Tf)-conjugated SeNPs and its use as a cancer-targeted drug delivery system to achieve enhanced cellular uptake and anticancer efficacy. Tf as targeting ligand significantly enhances the cellular uptake of doxorubicin (DOX)-loaded SeNPs through clathrin-mediated and caveolae/lipid raft-mediated endocytosis in cancer cells overexpressing transferrin receptor, and increases their selectivity between cancer and normal cells. DOX-loaded and Tf-conjugated SeNPs (Tf-SeNPs) exhibits unprecedented enhanced cytotoxicity toward cancer cells through induction of apoptosis with the involvement of intrinsic and extrinsic pathways. Internalized Tf-SeNPs triggers intracellular ROS overproduction, thus activates p53 and MAPKs pathways to promote cell apoptosis. In the nude mice xenograft experiment, Tf-SeNPs significantly inhibits the tumor growth via induction of p53-mediated apoptosis. This cancer-targeted design of SeNPs opens a new path for synergistic treating of cancer with higher efficacy and decreased side effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses.

              Polymeric materials have been extensively developed as a delivery vehicle for nucleic acids over the past two decades. Many previous studies have demonstrated that synthetic delivery vehicles can be highly functionalized by chemical approaches to overcome biological barriers in nucleic acid delivery, similar to viruses. Based on our current knowledge, this tutorial review describes rational strategies in the design of polymeric materials to achieve construction of the versatile vehicles, that is "artificial viruses", for successful gene therapy, especially focusing on the chemical structures with the minimal adverse effects.
                Bookmark

                Author and article information

                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                2016
                2016
                : 4
                : 36
                : 5980-5990
                Affiliations
                [1 ]Department of Chemistry
                [2 ]Jinan University
                [3 ]Guangzhou 510632
                [4 ]China
                Article
                10.1039/C6TB01329E
                32263487
                07fd0ded-b285-4559-b75e-aa488c24d43d
                © 2016
                History

                Comments

                Comment on this article