0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      High‐Drug‐Loading Mesoporous Silica Nanorods with Reduced Toxicity for Precise Cancer Therapy against Nasopharyngeal Carcinoma

      1 , 1 , 1 , 1
      Advanced Functional Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Engineered nanoparticles for drug delivery in cancer therapy.

          In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strategies in the design of nanoparticles for therapeutic applications.

            Engineered nanoparticles have the potential to revolutionize the diagnosis and treatment of many diseases; for example, by allowing the targeted delivery of a drug to particular subsets of cells. However, so far, such nanoparticles have not proved capable of surmounting all of the biological barriers required to achieve this goal. Nevertheless, advances in nanoparticle engineering, as well as advances in understanding the importance of nanoparticle characteristics such as size, shape and surface properties for biological interactions, are creating new opportunities for the development of nanoparticles for therapeutic applications. This Review focuses on recent progress important for the rational design of such nanoparticles and discusses the challenges to realizing the potential of nanoparticles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function.

              The interaction between nanoparticles (NPs) and cells has been studied extensively, but the effect of particle shape on cell behavior has received little attention. Herein three different shaped monodisperse mesoporous silica nanoparticles (MSNs) of similar particle diameter, chemical composition and surface charge but with different aspect ratios (ARs, 1, 2, 4) were specially designed. Then the effects of particle shape of these three different shaped particles on cellular uptake and behavior were studied. The results indicated that these different shaped particles were readily internalized in A375 human melanoma (A375) cells by nonspecific cellular uptake. Particles with larger ARs were taken up in larger amounts and had faster internalization rates. Likewise, it was also found that particles with larger ARs had a greater impact on different aspects of cellular function including cell proliferation, apoptosis, cytoskeleton formation, adhesion and migration. These results show that nanoparticles should no longer be viewed as simple carriers for biomedical applications, but can also play an active role in mediating biological effects. Therefore, our findings may provide useful information for the development of new strategies for the design of efficient drug delivery nanocarriers and therapeutic systems and provide insights into nanotoxicity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                November 2017
                September 26 2017
                November 2017
                : 27
                : 42
                : 1703313
                Affiliations
                [1 ]Department of Chemistry Jinan University Guangzhou 510632 China
                Article
                10.1002/adfm.201703313
                a30e7e75-af09-4ed7-a6ec-df72de27139d
                © 2017

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article