15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mammalian gut harbors a complex and dynamic microbial ecosystem: the microbiota. While emerging studies support that microbiota regulates brain function with a few molecular cues suggested, the overall biochemical landscape of the “microbiota-gut-brain axis” remains largely unclear. Here we use high-coverage metabolomics to comparatively profile feces, blood sera, and cerebral cortical brain tissues of germ-free C57BL/6 mice and their age-matched conventionally raised counterparts. Results revealed for all three matrices metabolomic signatures owing to microbiota, yielding hundreds of identified metabolites including 533 altered for feces, 231 for sera, and 58 for brain with numerous significantly enriched pathways involving aromatic amino acids and neurotransmitters. Multicompartmental comparative analyses single out microbiota-derived metabolites potentially implicated in interorgan transport and the gut-brain axis, as exemplified by indoxyl sulfate and trimethylamine- N-oxide. Gender-specific characteristics of these landscapes are discussed. Our findings may be valuable for future research probing microbial influences on host metabolism and gut-brain communication.

          Abstract

          The gut microbiota harbours neuroactive potential with links to neurological disorders. Here, the authors apply global metabolomics with an integrated annotation strategy to comparatively profile fecal, blood serum and cerebral cortical brain tissues of eight-week-old germ-free mice vs. age-matched specific-pathogen-free mice, providing a snapshot of the metabolome status linked to the gut-brain axis.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          An obesity-associated gut microbiome with increased capacity for energy harvest.

          The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

            Metabolomics studies hold promise for discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. A metabolomics approach was used to generate unbiased small molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine, namely choline, trimethylamine N-oxide (TMAO), and betaine, were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted up-regulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases (FMOs), an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidemic mice. Discovery of a relationship between gut flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for development of both novel diagnostic tests and therapeutic approaches for atherosclerotic heart disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis

              Abstract We present a new update to MetaboAnalyst (version 4.0) for comprehensive metabolomic data analysis, interpretation, and integration with other omics data. Since the last major update in 2015, MetaboAnalyst has continued to evolve based on user feedback and technological advancements in the field. For this year's update, four new key features have been added to MetaboAnalyst 4.0, including: (1) real-time R command tracking and display coupled with the release of a companion MetaboAnalystR package; (2) a MS Peaks to Pathways module for prediction of pathway activity from untargeted mass spectral data using the mummichog algorithm; (3) a Biomarker Meta-analysis module for robust biomarker identification through the combination of multiple metabolomic datasets and (4) a Network Explorer module for integrative analysis of metabolomics, metagenomics, and/or transcriptomics data. The user interface of MetaboAnalyst 4.0 has been reengineered to provide a more modern look and feel, as well as to give more space and flexibility to introduce new functions. The underlying knowledgebases (compound libraries, metabolite sets, and metabolic pathways) have also been updated based on the latest data from the Human Metabolome Database (HMDB). A Docker image of MetaboAnalyst is also available to facilitate download and local installation of MetaboAnalyst. MetaboAnalyst 4.0 is freely available at http://metaboanalyst.ca.
                Bookmark

                Author and article information

                Contributors
                kunlu@unc.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                19 October 2021
                19 October 2021
                2021
                : 12
                : 6000
                Affiliations
                GRID grid.10698.36, ISNI 0000000122483208, Department of Environmental Sciences and Engineering, , Gillings School of Global Public Health, CB# 7431, University of North Carolina, ; Chapel Hill, NC 27599 United States
                Author information
                http://orcid.org/0000-0002-1081-0897
                http://orcid.org/0000-0002-0823-0252
                http://orcid.org/0000-0003-1189-6511
                Article
                26209
                10.1038/s41467-021-26209-8
                8526691
                34667167
                047e21e4-f281-45ac-8940-b35bbe2147df
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 November 2020
                : 6 September 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000066, U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS);
                Award ID: R01ES024950
                Award ID: R03ES032067
                Award ID: R35ES028366
                Award ID: P42ES031007
                Award ID: P30ES010126
                Award Recipient :
                Funded by: U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
                Funded by: U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
                Funded by: U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
                Funded by: U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                metabolomics,microbiology,biochemical networks,biomarkers
                Uncategorized
                metabolomics, microbiology, biochemical networks, biomarkers

                Comments

                Comment on this article