864
views
0
recommends
+1 Recommend
0 collections
    11
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing Vaccination Sentiments with Online Social Media: Implications for Infectious Disease Dynamics and Control

      research-article
      * ,
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is great interest in the dynamics of health behaviors in social networks and how they affect collective public health outcomes, but measuring population health behaviors over time and space requires substantial resources. Here, we use publicly available data from 101,853 users of online social media collected over a time period of almost six months to measure the spatio-temporal sentiment towards a new vaccine. We validated our approach by identifying a strong correlation between sentiments expressed online and CDC-estimated vaccination rates by region. Analysis of the network of opinionated users showed that information flows more often between users who share the same sentiments - and less often between users who do not share the same sentiments - than expected by chance alone. We also found that most communities are dominated by either positive or negative sentiments towards the novel vaccine. Simulations of infectious disease transmission show that if clusters of negative vaccine sentiments lead to clusters of unprotected individuals, the likelihood of disease outbreaks is greatly increased. Online social media provide unprecedented access to data allowing for inexpensive and efficient tools to identify target areas for intervention efforts and to evaluate their effectiveness.

          Author Summary

          Sentiments about vaccination can strongly affect individual vaccination decisions. Measuring such sentiments - and how they are distributed in a population - is typically a difficult and resource-intensive endeavor. We use publicly available data from Twitter, a popular online social media service, to measure the evolution and distribution of sentiments towards the novel influenza A(H1N1) vaccine during the second half of 2009, i.e. the fall wave of the H1N1 (swine flu) pandemic. We find that projected vaccination rates based on sentiments expressed on Twitter are in very good agreement with vaccination rates estimated by the CDC with traditional phone surveys. Looking at the online social network, we find that both negative and positive opinions are clustered, and that an equivalent level of clustering of vaccinations in a population would strongly increase disease outbreak risks.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          The spread of behavior in an online social network experiment.

          How do social networks affect the spread of behavior? A popular hypothesis states that networks with many clustered ties and a high degree of separation will be less effective for behavioral diffusion than networks in which locally redundant ties are rewired to provide shortcuts across the social space. A competing hypothesis argues that when behaviors require social reinforcement, a network with more clustering may be more advantageous, even if the network as a whole has a larger diameter. I investigated the effects of network structure on diffusion by studying the spread of health behavior through artificially structured online communities. Individual adoption was much more likely when participants received social reinforcement from multiple neighbors in the social network. The behavior spread farther and faster across clustered-lattice networks than across corresponding random networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mixing patterns in networks

            M. Newman (2002)
            We study assortative mixing in networks, the tendency for vertices in networks to be connected to other vertices that are like (or unlike) them in some way. We consider mixing according to discrete characteristics such as language or race in social networks and scalar characteristics such as age. As a special example of the latter we consider mixing according to vertex degree, i.e., according to the number of connections vertices have to other vertices: do gregarious people tend to associate with other gregarious people? We propose a number of measures of assortative mixing appropriate to the various mixing types, and apply them to a variety of real-world networks, showing that assortative mixing is a pervasive phenomenon found in many networks. We also propose several models of assortatively mixed networks, both analytic ones based on generating function methods, and numerical ones based on Monte Carlo graph generation techniques. We use these models to probe the properties of networks as their level of assortativity is varied. In the particular case of mixing by degree, we find strong variation with assortativity in the connectivity of the network and in the resilience of the network to the removal of vertices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Statistical Mechanics of Community Detection

              Starting from a general \textit{ansatz}, we show how community detection can be interpreted as finding the ground state of an infinite range spin glass. Our approach applies to weighted and directed networks alike. It contains the \textit{at hoc} introduced quality function from \cite{ReichardtPRL} and the modularity \(Q\) as defined by Newman and Girvan \cite{Girvan03} as special cases. The community structure of the network is interpreted as the spin configuration that minimizes the energy of the spin glass with the spin states being the community indices. We elucidate the properties of the ground state configuration to give a concise definition of communities as cohesive subgroups in networks that is adaptive to the specific class of network under study. Further we show, how hierarchies and overlap in the community structure can be detected. Computationally effective local update rules for optimization procedures to find the ground state are given. We show how the \textit{ansatz} may be used to discover the community around a given node without detecting all communities in the full network and we give benchmarks for the performance of this extension. Finally, we give expectation values for the modularity of random graphs, which can be used in the assessment of statistical significance of community structure.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                October 2011
                October 2011
                13 October 2011
                : 7
                : 10
                : e1002199
                Affiliations
                [1]Center for Infectious Disease Dynamics, Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
                University of Texas at Austin, United States of America
                Author notes

                Conceived and designed the experiments: MS. Performed the experiments: MS SK. Analyzed the data: MS SK. Contributed reagents/materials/analysis tools: MS SK. Wrote the paper: MS SK.

                Article
                PCOMPBIOL-D-11-00652
                10.1371/journal.pcbi.1002199
                3192813
                22022249
                00cda206-11c8-4e9a-88be-3cf28e84057e
                Salathé, Khandelwal. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 May 2011
                : 30 July 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Social and Behavioral Sciences
                Sociology
                Social Networks
                Biology
                Computational Biology
                Population Modeling
                Infectious Disease Modeling
                Natural Language Processing
                Text Mining

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article