10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      P2 of Rice grassy stunt virus (RGSV) and p6 and p9 of Rice ragged stunt virus (RRSV) isolates from Vietnam exert suppressor activity on the RNA silencing pathway.

      Virus Genes
      Springer Nature America, Inc
      Silencing suppressors, Rice grassy stunt virus, Rice production in Vietnam, Rice ragged stunt virus, Rice viruses

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Vietnam, the two main viruses that cause disease in rice are the Rice grassy stunt virus (RGSV) and the Rice ragged stunt virus (RRSV). Outbreaks of these two viruses have dramatically decreased rice production in Vietnam. Because natural resistance genes are unknown, an RNAi strategy may be an alternative method to develop resistance to RGSV and RRSV. However, this strategy will be efficient only if putative silencing suppressors encoded by the two viruses are neutralized. To identify these suppressors, we used the classical green fluorescent protein (GFP) agroinfiltration method in Nicotiana benthamiana. Then, we investigated the effects of viral candidate proteins on GFP expression and GFP siRNA accumulation and their interference with the short- or long-range signal of silencing. RGSV genes s2gp1, s5gp2, and s6gp1 and RRSV genes s5gp1, s6gp1, s9gp1, and s10gp1 were selected for viral silencing suppressor investigation according to their small molecular weight, the presence of cysteines, or the presence of a GW motif in related protein products. We confirmed that protein p6 of RRSV displays mild silencing suppressor activity and affects long-range silencing by delaying the systemic silencing signal. In addition, we identified two new silencing suppressors that displayed mild activity: p2 of RGSV and p9 of RRSV.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          RNA-based antiviral immunity.

          In eukaryotic RNA-based antiviral immunity, viral double-stranded RNA is recognized as a pathogen-associated molecular pattern and processed into small interfering RNAs (siRNAs) by the host ribonuclease Dicer. After amplification by host RNA-dependent RNA polymerases in some cases, these virus-derived siRNAs guide specific antiviral immunity through RNA interference and related RNA silencing effector mechanisms. Here, I review recent studies on the features of viral siRNAs and other virus-derived small RNAs from virus-infected fungi, plants, insects, nematodes and vertebrates and discuss the innate and adaptive properties of RNA-based antiviral immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs.

            Posttranscriptional gene silencing (PTGS) processes double-stranded (ds) RNAs into 21-25 nucleotide (nt) RNA fragments that direct ribonucleases to target cognate mRNAs. In higher plants, PTGS also generates mobile signals conferring sequence-specific silencing in distant organs. Since PTGS acts as an antiviral system in plants, successful virus infection requires evasion or suppression of gene silencing. Here we report that the 19 kDa protein (p19) of tombusviruses is a potent silencing suppressor that prevents the spread of mobile silencing signal. In vitro, p19 binds PTGS-generated, 21-25 nt dsRNAs and 21-nt synthetic dsRNAs with 2-nt 3' overhanging end(s), while it barely interacts with single-stranded (ss) RNAs, long dsRNAs or blunt-ended 21-nt dsRNAs. We propose that p19 mediates silencing suppression by sequestering the PTGS-generated 21-25 nt dsRNAs, thus depleting the specificity determinants of PTGS effector complexes. Moreover, the observation that p19-expressing transgenic plants show altered leaf morphology might indicate that the p19-targeted PTGS pathway is also important in the regulation of plant development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors.

              RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation.
                Bookmark

                Author and article information

                Journal
                26215087
                10.1007/s11262-015-1229-2

                Silencing suppressors,Rice grassy stunt virus,Rice production in Vietnam,Rice ragged stunt virus,Rice viruses

                Comments

                Comment on this article