67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Declining oxygen in the global ocean and coastal waters

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for upwelling of corrosive "acidified" water onto the continental shelf.

          The absorption of atmospheric carbon dioxide (CO2) into the ocean lowers the pH of the waters. This so-called ocean acidification could have important consequences for marine ecosystems. To better understand the extent of this ocean acidification in coastal waters, we conducted hydrographic surveys along the continental shelf of western North America from central Canada to northern Mexico. We observed seawater that is undersaturated with respect to aragonite upwelling onto large portions of the continental shelf, reaching depths of approximately 40 to 120 meters along most transect lines and all the way to the surface on one transect off northern California. Although seasonal upwelling of the undersaturated waters onto the shelf is a natural phenomenon in this region, the ocean uptake of anthropogenic CO2 has increased the areal extent of the affected area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Expanding oxygen-minimum zones in the tropical oceans.

            Oxygen-poor waters occupy large volumes of the intermediate-depth eastern tropical oceans. Oxygen-poor conditions have far-reaching impacts on ecosystems because important mobile macroorganisms avoid or cannot survive in hypoxic zones. Climate models predict declines in oceanic dissolved oxygen produced by global warming. We constructed 50-year time series of dissolved-oxygen concentration for select tropical oceanic regions by augmenting a historical database with recent measurements. These time series reveal vertical expansion of the intermediate-depth low-oxygen zones in the eastern tropical Atlantic and the equatorial Pacific during the past 50 years. The oxygen decrease in the 300- to 700-m layer is 0.09 to 0.34 micromoles per kilogram per year. Reduced oxygen levels may have dramatic consequences for ecosystems and coastal economies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thresholds of hypoxia for marine biodiversity.

              Hypoxia is a mounting problem affecting the world's coastal waters, with severe consequences for marine life, including death and catastrophic changes. Hypoxia is forecast to increase owing to the combined effects of the continued spread of coastal eutrophication and global warming. A broad comparative analysis across a range of contrasting marine benthic organisms showed that hypoxia thresholds vary greatly across marine benthic organisms and that the conventional definition of 2 mg O(2)/liter to designate waters as hypoxic is below the empirical sublethal and lethal O(2) thresholds for half of the species tested. These results imply that the number and area of coastal ecosystems affected by hypoxia and the future extent of hypoxia impacts on marine life have been generally underestimated.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 04 2018
                January 05 2018
                : 359
                : 6371
                : eaam7240
                Article
                10.1126/science.aam7240
                29301986
                ff81103c-1a91-414a-81ce-14dc1e2db413
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article