25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Urinary Metals and Heart Rate Variability: A Cross-Sectional Study of Urban Adults in Wuhan, China

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Epidemiological studies have suggested an association between external estimates of exposure to metals in air particles and altered heart rate variability (HRV). However, studies on the association between internal assessments of metals exposure and HRV are limited.

          Objectives

          The purpose of this study was to examine the potential association between urinary metals and HRV among residents of an urban community in Wuhan, China.

          Methods

          We performed a cross-sectional analysis of 23 urinary metals and 5-min HRV indices (SDNN, standard deviation of normal-to-normal intervals; r-MSSD, root mean square of successive differences in adjacent normal-to-normal intervals; LF, low frequency; HF, high frequency; TP, total power) using baseline data on 2,004 adult residents of Wuhan.

          Results

          After adjusting for other metals, creatinine, and other covariates, natural log-transformed urine titanium concentration was positively associated with all HRV indices (all p < 0.05). Moreover, we estimated negative associations between cadmium and r-MSSD, LF, HF, and TP; between lead and r-MSSD, HF, and TP; and between iron, copper, and arsenic and HF, SDNN, and LF, respectively, based on models adjusted for other metals, creatinine, and covariates (all p < 0.10). Several associations differed according to cardiovascular disease risk factors. For example, negative associations between cadmium and r-MSSD were stronger among participants ≤ 52 years of age (vs. > 52), current smokers (vs. nonsmokers), body mass index < 25 kg/m 2 (vs. ≥ 25), and among those who were not hypertensive.

          Conclusions

          Urine concentrations of several metals were associated with HRV parameters in our cross-sectional study population. These findings need replication in other studies with adequate sample sizes.

          Citation

          Feng W, He X, Chen M, Deng S, Qiu G, Li X, Liu C, Li J, Deng Q, Huang S, Wang T, Dai X, Yang B, Yuan J, He M, Zhang X, Chen W, Kan H, Wu T. 2015. Urinary metals and heart rate variability: a cross-sectional study of urban adults in Wuhan, China. Environ Health Perspect 123:217–222;  http://dx.doi.org/10.1289/ehp.1307563

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Exposure measurement error in time-series studies of air pollution: concepts and consequences.

          Misclassification of exposure is a well-recognized inherent limitation of epidemiologic studies of disease and the environment. For many agents of interest, exposures take place over time and in multiple locations; accurately estimating the relevant exposures for an individual participant in epidemiologic studies is often daunting, particularly within the limits set by feasibility, participant burden, and cost. Researchers have taken steps to deal with the consequences of measurement error by limiting the degree of error through a study's design, estimating the degree of error using a nested validation study, and by adjusting for measurement error in statistical analyses. In this paper, we address measurement error in observational studies of air pollution and health. Because measurement error may have substantial implications for interpreting epidemiologic studies on air pollution, particularly the time-series analyses, we developed a systematic conceptual formulation of the problem of measurement error in epidemiologic studies of air pollution and then considered the consequences within this formulation. When possible, we used available relevant data to make simple estimates of measurement error effects. This paper provides an overview of measurement errors in linear regression, distinguishing two extremes of a continuum-Berkson from classical type errors, and the univariate from the multivariate predictor case. We then propose one conceptual framework for the evaluation of measurement errors in the log-linear regression used for time-series studies of particulate air pollution and mortality and identify three main components of error. We present new simple analyses of data on exposures of particulate matter < 10 microm in aerodynamic diameter from the Particle Total Exposure Assessment Methodology Study. Finally, we summarize open questions regarding measurement error and suggest the kind of additional data necessary to address them. Images Figure 1 Figure 2 Figure 3
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lead Exposure and Cardiovascular Disease—A Systematic Review

            Objective This systematic review evaluates the evidence on the association between lead exposure and cardiovascular end points in human populations. Methods We reviewed all observational studies from database searches and citations regarding lead and cardiovascular end points. Results A positive association of lead exposure with blood pressure has been identified in numerous studies in different settings, including prospective studies and in relatively homogeneous socioeconomic status groups. Several studies have identified a dose–response relationship. Although the magnitude of this association is modest, it may be underestimated by measurement error. The hypertensive effects of lead have been confirmed in experimental models. Beyond hypertension, studies in general populations have identified a positive association of lead exposure with clinical cardiovascular outcomes (cardiovascular, coronary heart disease, and stroke mortality; and peripheral arterial disease), but the number of studies is small. In some studies these associations were observed at blood lead levels < 5 μg/dL. Conclusions We conclude that the evidence is sufficient to infer a causal relationship of lead exposure with hypertension. We conclude that the evidence is suggestive but not sufficient to infer a causal relationship of lead exposure with clinical cardiovascular outcomes. There is also suggestive but insufficient evidence to infer a causal relationship of lead exposure with heart rate variability. Public Health Implications These findings have immediate public health implications. Current occupational safety standards for blood lead must be lowered and a criterion for screening elevated lead exposure needs to be established in adults. Risk assessment and economic analyses of lead exposure impact must include the cardiovascular effects of lead. Finally, regulatory and public health interventions must be developed and implemented to further prevent and reduce lead exposure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer risks from arsenic in drinking water.

              Ingestion of arsenic, both from water supplies and medicinal preparations, is known to cause skin cancer. The evidence assessed here indicates that arsenic can also cause liver, lung, kidney, and bladder cancer and that the population cancer risks due to arsenic in U.S. water supplies may be comparable to those from environmental tobacco smoke and radon in homes. Large population studies in an area of Taiwan with high arsenic levels in well water (170-800 micrograms/L) were used to establish dose-response relationships between cancer risks and the concentration of inorganic arsenic naturally present in water supplies. It was estimated that at the current EPA standard of 50 micrograms/L, the lifetime risk of dying from cancer of the liver, lung, kidney, or bladder from drinking 1 L/day of water could be as high as 13 per 1000 persons. It has been estimated that more than 350,000 people in the United States may be supplied with water containing more than 50 micrograms/L arsenic, and more than 2.5 million people may be supplied with water with levels above 25 micrograms/L. For average arsenic levels and water consumption patterns in the United States, the risk estimate was around 1/1000. Although further research is needed to validate these findings, measures to reduce arsenic levels in water supplies should be considered.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                NLM-Export
                0091-6765
                1552-9924
                30 October 2014
                March 2015
                : 123
                : 3
                : 217-222
                Affiliations
                [1 ]Department of Occupational and Environmental Health, and
                [2 ]Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
                [3 ]Department of Nutrition, and
                [4 ]Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
                [5 ]School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
                [* ]These authors contributed equally to this work.
                Author notes
                Address correspondence to T. Wu, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, Hubei, China. Telephone: 86-27-83692347. E-mail: wut@ 123456mails.tjmu.edu.cn
                Article
                ehp.1307563
                10.1289/ehp.1307563
                4348740
                25356836
                fd3d73c8-cf12-464b-a696-5b72270f7b63

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 29 August 2013
                : 28 October 2014
                : 30 October 2014
                : 01 March 2015
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article