0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GUV-Net for high fidelity shoeprint generation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shoeprints contain valuable information for tracing evidence in forensic scenes, and they need to be generated into cleaned, sharp, and high-fidelity images. Most of the acquired shoeprints are found with low quality and/or in distorted forms. The high-fidelity shoeprint generation is of great significance in forensic science. A wide range of deep learning models has been suggested for super-resolution, being either generalized approaches or application specific. Considering the crucial challenges in shoeprint based processing and lacking specific algorithms, we proposed a deep learning based GUV-Net model for high-fidelity shoeprint generation. GUV-Net imitates learning features from VAE, U-Net, and GAN network models with special treatment of absent ground truth shoeprints. GUV-Net encodes efficient probabilistic distributions in the latent space and decodes variants of samples together with passed key features. GUV-Net forwards the learned samples to a refinement-unit proceeded to the generation of high-fidelity output. The refinement-unit receives low-level features from the decoding module at distinct levels. Furthermore, the refinement process is made more efficient by inverse-encoded in high dimensional space through a parallel inverse encoding network. The objective functions at different levels enable the model to efficiently optimize the parameters by mapping a low quality image to a high-fidelity one by maintaining salient features which are important to forensics. Finally, the performance of the proposed model is evaluated against state-of-the-art super-resolution network models.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          U-Net: Convolutional Networks for Biomedical Image Segmentation

            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Going deeper with convolutions

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Densely Connected Convolutional Networks

                Bookmark

                Author and article information

                Contributors
                Journal
                Complex & Intelligent Systems
                Complex Intell. Syst.
                Springer Science and Business Media LLC
                2199-4536
                2198-6053
                April 2022
                October 21 2021
                April 2022
                : 8
                : 2
                : 933-947
                Article
                10.1007/s40747-021-00558-9
                fcf83259-0b27-4cf6-b294-88228411ef78
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article