103
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chlamydia trachomatis Co-opts GBF1 and CERT to Acquire Host Sphingomyelin for Distinct Roles during Intracellular Development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche.

          Author Summary

          C. trachomatis is the leading cause of non-congenital blindness in developing countries and is the number one cause of sexually transmitted disease and non-congenital infertility in Western countries. The capacity of Chlamydia infections to lead to infertility and blindness, their association with chronic diseases, and the extraordinary prevalence and array of these infections make them public concerns of primary importance. This pathogen must establish a protective membrane-bound niche and acquire essential lipids from the host cell during infection in order to survive and replicate. This study identifies novel mechanisms by which C. trachomatis hijacks various lipid trafficking proteins for distinct roles during intracellular development. Disruption of these lipid trafficking pathways results in alterations in the growth and stability of its protective niche as well as a defect in replication. Understanding the molecular mechanisms of these host-pathogen interactions will lead to rational approaches for the development of novel therapeutics, diagnostics, and preventative strategies.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular machinery for non-vesicular trafficking of ceramide.

          Synthesis and sorting of lipids are essential for membrane biogenesis; however, the mechanisms underlying the transport of membrane lipids remain little understood. Ceramide is synthesized at the endoplasmic reticulum and translocated to the Golgi compartment for conversion to sphingomyelin. The main pathway of ceramide transport to the Golgi is genetically impaired in a mammalian mutant cell line, LY-A. Here we identify CERT as the factor defective in LY-A cells. CERT, which is identical to a splicing variant of Goodpasture antigen-binding protein, is a cytoplasmic protein with a phosphatidylinositol-4-monophosphate-binding (PtdIns4P) domain and a putative domain for catalysing lipid transfer. In vitro assays show that this lipid-transfer-catalysing domain specifically extracts ceramide from phospholipid bilayers. CERT expressed in LY-A cells has an amino acid substitution that destroys its PtdIns4P-binding activity, thereby impairing its Golgi-targeting function. We conclude that CERT mediates the intracellular trafficking of ceramide in a non-vesicular manner.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER

            In cells treated with brefeldin A (BFA), movement of newly synthesized membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus was blocked. Surprisingly, the glycoproteins retained in the ER were rapidly processed by cis/medial Golgi enzymes but not by trans Golgi enzymes. An explanation for these observations was provided from morphological studies at both the light and electron microscopic levels using markers for the cis/medial and trans Golgi. They revealed a rapid and dramatic redistribution to the ER of components of the cis/medial but not the trans Golgi in response to treatment with BFA. Upon removal of BFA, the morphology of the Golgi apparatus was rapidly reestablished and proteins normally transported out of the ER were efficiently and rapidly sorted to their final destinations. These results suggest that BFA disrupts a dynamic membrane-recycling pathway between the ER and cis/medial Golgi, effectively blocking membrane transport out of but not back to the ER.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional genomic screen reveals genes involved in lipid-droplet formation and utilization.

              Eukaryotic cells store neutral lipids in cytoplasmic lipid droplets enclosed in a monolayer of phospholipids and associated proteins. These dynamic organelles serve as the principal reservoirs for storing cellular energy and for the building blocks for membrane lipids. Excessive lipid accumulation in cells is a central feature of obesity, diabetes and atherosclerosis, yet remarkably little is known about lipid-droplet cell biology. Here we show, by means of a genome-wide RNA interference (RNAi) screen in Drosophila S2 cells that about 1.5% of all genes function in lipid-droplet formation and regulation. The phenotypes of the gene knockdowns sorted into five distinct phenotypic classes. Genes encoding enzymes of phospholipid biosynthesis proved to be determinants of lipid-droplet size and number, suggesting that the phospholipid composition of the monolayer profoundly affects droplet morphology and lipid utilization. A subset of the Arf1-COPI vesicular transport proteins also regulated droplet morphology and lipid utilization, thereby identifying a previously unrecognized function for this machinery. These phenotypes are conserved in mammalian cells, suggesting that insights from these studies are likely to be central to our understanding of human diseases involving excessive lipid storage.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2011
                September 2011
                1 September 2011
                : 7
                : 9
                : e1002198
                Affiliations
                [1 ]Department of Medicine, University of California, San Francisco, California, United States of America
                [2 ]Microbial Pathogenesis and Host Defense Program, University of California, San Francisco, California, United States of America
                [3 ]Microbiology and Immunology, University of California, San Francisco, California, United States of America
                [4 ]Cell and Tissue Biology, University of California, San Francisco, California, United States of America
                [5 ]Department of Biochemistry and Cell Biology, National Institute of Infectious Disease, Tokyo, Japan
                [6 ]Department of Cell Biology, University of Alberta, Edmonton, Canada
                Duke University, United States of America
                Author notes

                Conceived and designed the experiments: CAE JNE. Performed the experiments: CAE SJ AL. Analyzed the data: CAE JNE. Contributed reagents/materials/analysis tools: KH PM JK TW. Wrote the paper: CAE JNE.

                Article
                PPATHOGENS-D-11-00068
                10.1371/journal.ppat.1002198
                3164637
                21909260
                fca53e5d-e916-45a6-870c-a9390126be86
                Elwell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 January 2011
                : 23 June 2011
                Page count
                Pages: 20
                Categories
                Research Article
                Biology
                Microbiology
                Molecular Cell Biology
                Medicine
                Women's Health

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article