17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetically encoded intrabody sensors report the interaction and trafficking of β-arrestin 1 upon activation of G protein–coupled receptors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Agonist stimulation of G protein–coupled receptors (GPCRs) typically leads to phosphorylation of GPCRs and binding to multifunctional proteins called β-arrestins (βarrs). The GPCR–βarr interaction critically contributes to GPCR desensitization, endocytosis, and downstream signaling, and GPCR–βarr complex formation can be used as a generic readout of GPCR and βarr activation. Although several methods are currently available to monitor GPCR–βarr interactions, additional sensors to visualize them may expand the toolbox and complement existing methods. We have previously described antibody fragments (FABs) that recognize activated βarr1 upon its interaction with the vasopressin V2 receptor C-terminal phosphopeptide (V2Rpp). Here, we demonstrate that these FABs efficiently report the formation of a GPCR–βarr1 complex for a broad set of chimeric GPCRs harboring the V2R C terminus. We adapted these FABs to an intrabody format by converting them to single-chain variable fragments (ScFvs) and used them to monitor the localization and trafficking of βarr1 in live cells. We observed that upon agonist simulation of cells expressing chimeric GPCRs, these intrabodies first translocate to the cell surface, followed by trafficking into intracellular vesicles. The translocation pattern of intrabodies mirrored that of βarr1, and the intrabodies co-localized with βarr1 at the cell surface and in intracellular vesicles. Interestingly, we discovered that intrabody sensors can also report βarr1 recruitment and trafficking for several unmodified GPCRs. Our characterization of intrabody sensors for βarr1 recruitment and trafficking expands currently available approaches to visualize GPCR–βarr1 binding, which may help decipher additional aspects of GPCR signaling and regulation.

          Related collections

          Author and article information

          Journal
          Journal of Biological Chemistry
          J. Biol. Chem.
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          1083-351X
          May 21 2020
          : jbc.RA120.013470
          Article
          10.1074/jbc.RA120.013470
          32439801
          fb9724e4-547f-4062-af52-d1eca038b91a
          © 2020
          History

          Comments

          Comment on this article