30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes (EVs) have relevance in cell-to-cell communication carrying pro-tumorigenic factors that participate in oncogenesis and drug resistance and are proposed to have potential as self-delivery systems. Advancing on our studies of EVs in triple-negative breast cancer, here we more comprehensively analysed isogenic cell line variants and their EV populations, tissues cell line variants and their EV populations, as well as breast tumour and normal tissues. Profiling 384 miRNAs showed EV miRNA content to be highly representative of their cells of origin. miRNAs most substantially down-regulated in aggressive cells and their EVs originated from 14q32. Analysis of miR-134, the most substantially down-regulated miRNA, supported its clinical relevance in breast tumours compared to matched normal breast tissue. Functional studies indicated that miR-134 controls STAT5B which, in turn, controls Hsp90. miR-134 delivered by direct transfection into Hs578Ts(i) 8 cells (in which it was greatly down-regulated) reduced STAT5B, Hsp90, and Bcl-2 levels, reduced cellular proliferation, and enhanced cisplatin-induced apoptosis. Delivery via miR-134-enriched EVs also reduced STAT5B and Hsp90, reduced cellular migration and invasion, and enhanced sensitivity to anti-Hsp90 drugs. While the differing effects achieved by transfection or EV delivery are likely to be, at least partly, due to specific amounts of miR-134 delivered by these routes, these EV-based studies identified miRNA-134 as a potential biomarker and therapeutic for breast cancer.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Leukemia cell to endothelial cell communication via exosomal miRNAs.

          Recent findings indicate that specific microRNAs (miRNAs), such as those of the miR-17-92 cluster, may be responsible for regulating endothelial gene expression during tumor angiogenesis. Secreted miRNAs enclosed in exosomes also have an important role in cell-cell communication. To elucidate whether miRNAs secreted from neoplastic cells transfer into endothelial cells and are functionally active in the recipient cells, we investigated the effect of exosomal miRNAs derived from leukemia cells (K562) on human umbilical vein endothelial cells (HUVECs). As K562 cells released the miR-17-92 cluster, especially miR-92a, into the extracellular environment, K562 cells, transfected with Cy3-labeled pre-miR-92a, were co-cultured with HUVECs. Cy3-miR-92a derived from K562 cells was detected in the cytoplasm of HUVECs, and the Cy3-miR-92a co-localized with the signals of an exosomal marker, CD63. The expression of integrin α5, a target gene for miR-92a, was significantly reduced in HUVECs by exosomal miR-92a, indicating that exogenous miRNA via exosomal transport can function like endogenous miRNA in HUVECs. The most salient feature of this study is the exosome, derived from K562 cells with enforced miR-92a expression, did not affect the growth of HUVECs but did enhance endothelial cell migration and tube formation. Our results support the idea that exosomal miRNAs have an important role in neoplasia-to-endothelial cell communication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma.

            Exosomes are 40-nm to 100-nm membrane vesicles that are secreted by various cells, and they play a major role in cell-cell communication. The objective of this study was to clarify the significance of the levels of microRNA in exosomes extracted from the sera of patients with esophageal squamous cell cancer (ESCC). The authors isolated exosomes in serum samples from patients who had ESCC and from patients who had benign diseases without systemic inflammation. Total RNA was purified from the exosomes, and expression levels of microRNA-21 (miR-21) were analyzed by quantitative real-time polymerase chain reaction. Serum exosomes from patients with ESCC induced the proliferation of ESCC cells in vitro. The expression levels of exosomal miR-21 were significantly higher in patients with ESCC than those with benign diseases with and without (C-reactive protein <0.3 mg/dL) systemic inflammation. MiR-21 was not detected in serum that remained after exosome extraction. Exosomal miR-21 expression was correlated with advanced tumor classification, positive lymph node status, and the presence of metastasis with inflammation or and clinical stage without inflammation (C-reactive protein <0.3 mg/dL). The current results confirmed that exosomal miR-21 expression is up-regulated in serum from patients with ESCC versus serum from patients who have benign diseases without systemic inflammation. Exosomal miR-21 was positively correlated with tumor progression and aggressiveness, suggesting that it may be a useful target for cancer therapy. Cancer 2013. © 2012 American Cancer Society. Copyright © 2012 American Cancer Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular vesicles as drug delivery systems: lessons from the liposome field.

              Extracellular vesicles (EVs) are membrane-derived particles surrounded by a (phospho)lipid bilayer that are released by cells in the human body. In addition to direct cell-to-cell contact and the secretion of soluble factors, EVs function as another mechanism of intercellular communication. These vesicles are able to efficiently deliver their parental cell-derived molecular cargo to recipient cells, which can result in structural changes at an RNA, protein, or even phenotypic level. For this reason, EVs have recently gained much interest for drug delivery purposes. In contrast to these 'natural delivery systems', synthetic (phospho)lipid vesicles, or liposomes, have been employed as drug carriers for decades, resulting in several approved liposomal nanomedicines used in the clinic. This review discusses the similarities and differences between EVs and liposomes with the focus on features that are relevant for drug delivery purposes such as circulation time, biodistribution, cellular interactions and cargo loading. By applying beneficial features of EVs to liposomes and vice versa, improved drug carriers can be developed which will advance the field of nanomedicines and ultimately improve patient outcomes. While the application of EVs for therapeutic drug delivery is still in its infancy, issues regarding the understanding of EV biogenesis, large-scale production and in vivo interactions need to be addressed in order to develop successful and cost-effective EV-based drug delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                20 October 2015
                24 September 2015
                : 6
                : 32
                : 32774-32789
                Affiliations
                1 School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
                2 Cancer Biology and Therapeutics Laboratory, Conway Institute, UCD School of Biomolecular and Biomedical Science, Dublin, Ireland
                3 Leibniz Institute DSMZ, German Collection of Human and Animal Cell Cultures, Braunschweig, Germany
                Author notes
                Correspondence to: Lorraine O'Driscoll, lodrisc@ 123456tcd.ie
                Article
                10.18632/oncotarget.5192
                4741729
                26416415
                fab36f5f-376d-4c2a-8974-3403a810ddf9
                Copyright: © 2015 O'Brien et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 October 2015
                : 14 September 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                exosomes/extracellular vesicles,mirnas,breast cancer
                Oncology & Radiotherapy
                exosomes/extracellular vesicles, mirnas, breast cancer

                Comments

                Comment on this article