2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of 19 major infectious diseases during COVID-19 epidemic and previous years in Zhejiang, implications for prevention measures

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The global pandemic of coronavirus disease 2019 (COVID-19) has attracted great public health efforts across the world. Few studies, however, have described the potential impact of these measures on other important infectious diseases.

          Methods

          The incidence of 19 major infectious diseases in Zhejiang Province was collected from the National Notifiable Infectious Disease Surveillance System from January 2017 to October 2020. The entire epidemic control phase was divided into three stages. The government deployed the first level response from 24 January to 2 March (the most rigorous measures). When the outbreak of COVID-19 was under control, the response level changed to the second level from 3 to 23 March, and then the third level response was implemented after 24 March. We compared the epidemiological characteristics of 19 major infectious diseases during different periods of the COVID-19 epidemic and previous years.

          Results

          A total of 1,814,881 cases of 19 infectious diseases were reported in Zhejiang from January 2017 to October 2020, resulting in an incidence rate of 8088.30 cases per 1,000,000 person-years. After the non-pharmaceutical intervention, the incidence of 19 infectious diseases dropped by 70.84%, from 9436.32 cases per 1,000,000 person-years to 2751.51 cases per 1,000,000 person-years, with the large decrease in the first response period of influenza. However, we observed that the daily incidence of severe fever with thrombocytopenia syndrome (SFTS) and leptospirosis increased slightly (from 1.11 cases per 1,000,000 person-years to 1.82 cases per 1,000,000 person-years for SFTS and 0.30 cases per 1,000,000 person-years to 1.24 cases per 1,000,000 person-years for leptospirosis). There was no significant difference in the distribution of epidemiological characteristic of most infectious diseases before and during the implementation of COVID-19 control measures.

          Conclusion

          Our study summarizes the epidemiological characteristics of 19 infectious diseases and indicates that the rigorous control measures for COVID-19 are also effective for majority of infectious diseases.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12879-022-07301-w.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Global trends in emerging infectious diseases

          The next new disease Emerging infectious diseases are a major threat to health: AIDS, SARS, drug-resistant bacteria and Ebola virus are among the more recent examples. By identifying emerging disease 'hotspots', the thinking goes, it should be possible to spot health risks at an early stage and prepare containment strategies. An analysis of over 300 examples of disease emerging between 1940 and 2004 suggests that these hotspots can be accurately mapped based on socio-economic, environmental and ecological factors. The data show that the surveillance effort, and much current research spending, is concentrated in developed economies, yet the risk maps point to developing countries as the more likely source of new diseases. Supplementary information The online version of this article (doi:10.1038/nature06536) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of non-pharmaceutical interventions to contain COVID-19 in China

            Summary On March 11, 2020, the World Health Organization declared COVID-19 a pandemic 1 . The outbreak containment strategies in China based on non-pharmaceutical interventions (NPIs) appear to be effective 2 , but quantitative research is still needed to assess the efficacy of NPIs and their timings 3 . Using epidemiological and anonymised human movement data 4,5 , here we develop a modelling framework that uses daily travel networks to simulate different outbreak and intervention scenarios across China. We estimated that there were a total of 114,325 COVID-19 cases (interquartile range 76,776 -164,576) in mainland China as of February 29, 2020. Without NPIs, the COVID-19 cases would likely have shown a 67-fold increase (interquartile range 44 - 94) by February 29, 2020, with the effectiveness of different interventions varying. The early detection and isolation of cases was estimated to have prevented more infections than travel restrictions and contact reductions, but combined NPIs achieved the strongest and most rapid effect. The lifting of travel restrictions since February 17, 2020 does not appear to lead to an increase in cases across China if the social distancing interventions can be maintained, even at a limited level of 25% reduction on average through late April. Our findings contribute to an improved understanding of NPIs on COVID-19 and to inform response efforts across the World.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Decreased Influenza Activity During the COVID-19 Pandemic — United States, Australia, Chile, and South Africa, 2020

              After recognition of widespread community transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), by mid- to late February 2020, indicators of influenza activity began to decline in the Northern Hemisphere. These changes were attributed to both artifactual changes related to declines in routine health seeking for respiratory illness as well as real changes in influenza virus circulation because of widespread implementation of measures to mitigate transmission of SARS-CoV-2. Data from clinical laboratories in the United States indicated a 61% decrease in the number of specimens submitted (from a median of 49,696 per week during September 29, 2019–February 29, 2020, to 19,537 during March 1–May 16, 2020) and a 98% decrease in influenza activity as measured by percentage of submitted specimens testing positive (from a median of 19.34% to 0.33%). Interseasonal (i.e., summer) circulation of influenza in the United States (May 17–August 8, 2020) is currently at historical lows (median = 0.20% tests positive in 2020 versus 2.35% in 2019, 1.04% in 2018, and 2.36% in 2017). Influenza data reported to the World Health Organization’s (WHO’s) FluNet platform from three Southern Hemisphere countries that serve as robust sentinel sites for influenza from Oceania (Australia), South America (Chile), and Southern Africa (South Africa) showed very low influenza activity during June–August 2020, the months that constitute the typical Southern Hemisphere influenza season. In countries or jurisdictions where extensive community mitigation measures are maintained (e.g., face masks, social distancing, school closures, and teleworking), those locations might have little influenza circulation during the upcoming 2020–21 Northern Hemisphere influenza season. The use of community mitigation measures for the COVID-19 pandemic, plus influenza vaccination, are likely to be effective in reducing the incidence and impact of influenza, and some of these mitigation measures could have a role in preventing influenza in future seasons. However, given the novelty of the COVID-19 pandemic and the uncertainty of continued community mitigation measures, it is important to plan for seasonal influenza circulation in the United States this fall and winter. Influenza vaccination of all persons aged ≥6 months remains the best method for influenza prevention and is especially important this season when SARS-CoV-2 and influenza virus might cocirculate ( 1 ). Data from approximately 300 U.S. clinical laboratories located throughout all 50 states, Puerto Rico, Guam, and the District of Columbia that participate in virologic surveillance for influenza through either the U.S. WHO Collaborating Laboratories System or the National Respiratory and Enteric Virus Surveillance System* were used for this analysis. Clinical laboratories primarily test respiratory specimens for diagnostic purposes, and data from these laboratories provide useful information on the timing and intensity of influenza activity. The median number of specimens tested per week and the median percentage of samples testing positive for influenza during September 29, 2019–February 29, 2020 (surveillance weeks 40–9, the period before the March 1, 2020 declaration of a national emergency related to COVID-19 † ) were compared with those tested during March 1–May 16, 2020 (weeks 10–20 after the declaration); data from three previous influenza seasons are presented as a comparison. To assess influenza virus activity in the Southern Hemisphere, influenza laboratory data from clinical and surveillance platforms reported from Australia, Chile, and South Africa to WHO’s FluNet § platform were analyzed. For each country, the percentage of samples testing positive for influenza for April–July (weeks 14–31) for four seasons (2017–2020) are presented. Selected measures implemented to respond to COVID-19 in these countries were ascertained from government websites. All data used were in the public domain. In the United States, influenza activity (measured by percentage of respiratory specimens submitted for influenza testing that yielded positive results) began to increase in early November 2019, and >20% of specimens were positive during December 15, 2019–March 7, 2020 (weeks 51–10), after which activity declined sharply (Figure 1). Percent positivity peaked on week 6 at 30.25% and decreased 14.90% by week 9, compared with an 89.77% decrease during weeks 10–13. By the week of March 22, 2020 (week 13), when the number of samples tested remained very high, percent positivity dropped to 2.3%, and since the week of April 5, 2020 (week 15), has remained 20% to 2.3% and has remained at historically low interseasonal levels (0.2% versus 1–2%). Data from Southern Hemisphere countries also indicate little influenza activity. What are the implications for public health practice? Interventions aimed against SARS-CoV-2 transmission, plus influenza vaccination, could substantially reduce influenza incidence and impact in the 2020–21 Northern Hemisphere season. Some mitigation measures might have a role in reducing transmission in future influenza seasons.
                Bookmark

                Author and article information

                Contributors
                jmsun@cdc.zj.cn
                wuyl27@mail2.sysu.edu.cn
                Journal
                BMC Infect Dis
                BMC Infect Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                28 March 2022
                28 March 2022
                2022
                : 22
                : 296
                Affiliations
                [1 ]GRID grid.12981.33, ISNI 0000 0001 2360 039X, Department of Epidemiology, School of Public Health, , Sun Yat-Sen University, ; Guangzhou, Guangdong China
                [2 ]GRID grid.433871.a, Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, ; Hangzhou, Zhejiang China
                [3 ]GRID grid.207374.5, ISNI 0000 0001 2189 3846, Department of Epidemiology and Biostatistics, College of Public Health, , Zhengzhou University, ; Zhengzhou, Henan China
                Article
                7301
                10.1186/s12879-022-07301-w
                8958816
                35346101
                f8928b2d-903f-4668-b2a0-123fb229efcf
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 April 2021
                : 22 March 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000865, Bill and Melinda Gates Foundation;
                Award ID: INV-016826
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 82041021
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Infectious disease & Microbiology
                communicable diseases,covid-19,prevention and control
                Infectious disease & Microbiology
                communicable diseases, covid-19, prevention and control

                Comments

                Comment on this article