67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ellagitannins from Rubus Berries for the Control of Gastric Inflammation: In Vitro and In Vivo Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ellagitannins have shown anti-inflammatory and anti- Helicobacter pylori properties; however, their anti-inflammatory activity at gastric level was not previously investigated. The aim of this research was to evaluate the effects of ellagitannins from Rubus berries on gastric inflammation. Ellagitannin enriched extracts (ETs) were prepared from Rubus fruticosus L. (blackberry) and Rubus idaeus L. (raspberry). The anti-inflammatory activity was tested on gastric cell line AGS stimulated by TNF-α and IL-1β for evaluating the effect on NF-kB driven transcription, nuclear translocation and IL-8 secretion. In vivo the protective effect of ellagitannins was evaluated in a rat model of ethanol-induced gastric lesions. Rats were treated orally for ten days with 20 mg/kg/day of ETs, and ethanol was given one hour before the sacrifice. Gastric mucosa was isolated and used for the determination of IL-8 release, NF-kB nuclear translocation, Trolox equivalents, superoxide dismutase and catalase activities. In vitro, ETs inhibited TNF-α induced NF-kB driven transcription (IC 50: 0.67–1.73 µg/mL) and reduced TNF-α-induced NF-kB nuclear translocation (57%–67% at 2 µg/mL). ETs inhibited IL-8 secretion induced by TNF-α and IL-1β at low concentrations (IC 50 range of 0.7–4 µg/mL). Sanguiin H-6 and lambertianin C, the major ETs present in the extracts, were found to be responsible, at least in part, for the effect of the mixtures. ETs of blackberry and raspberry decreased Ulcer Index by 88% and 75% respectively and protected from the ethanol induced oxidative stress in rats. CINC-1 (the rat homologue of IL-8) secretion in the gastric mucosa was reduced in the animals receiving blackberry and raspberry ETs. The effect of ETs on CINC-1 was associated to a decrease of NF-κB nuclear translocation in ETs treated animals. The results of the present study report for the first time the preventing effect of ETs in gastric inflammation and support for their use in dietary regimens against peptic ulcer.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          NF-kappaB activation by reactive oxygen species: fifteen years later.

          The transcription factor NF-kappaB plays a major role in coordinating innate and adaptative immunity, cellular proliferation, apoptosis and development. Since the discovery in 1991 that NF-kappaB may be activated by H(2)O(2), several laboratories have put a considerable effort into dissecting the molecular mechanisms underlying this activation. Whereas early studies revealed an atypical mechanism of activation, leading to IkappaBalpha Y42 phosphorylation independently of IkappaB kinase (IKK), recent findings suggest that H(2)O(2) activates NF-kappaB mainly through the classical IKK-dependent pathway. The molecular mechanisms leading to IKK activation are, however, cell-type specific and will be presented here. In this review, we also describe the effect of other ROS (HOCl and (1)O(2)) and reactive nitrogen species on NF-kappaB activation. Finally, we critically review the recent data highlighting the role of ROS in NF-kappaB activation by proinflammatory cytokines (TNF-alpha and IL-1beta) and lipopolysaccharide (LPS), two major components of innate immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells.

            Phytochemicals from fruits such as the pomegranate (Punica granatum L) may inhibit cancer cell proliferation and apoptosis through the modulation of cellular transcription factors and signaling proteins. In previous studies, pomegranate juice (PJ) and its ellagitannins inhibited proliferation and induced apoptosis in HT-29 colon cancer cells. The present study examined the effects of PJ on inflammatory cell signaling proteins in the HT-29 human colon cancer cell line. At a concentration of 50 mg/L PJ significantly suppressed TNFalpha-induced COX-2 protein expression by 79% (SE = 0.042), total pomegranate tannin extract (TPT) 55% (SE = 0.049), and punicalagin 48% (SE = 0.022). Additionally, PJ reduced phosphorylation of the p65 subunit and binding to the NFkappaB response element 6.4-fold. TPT suppressed NFkappaB binding 10-fold, punicalagin 3.6-fold, whereas ellagic acid (EA) (another pomegranate polyphenol) was ineffective. PJ also abolished TNFalpha-induced AKT activation, needed for NFkappaB activity. Therefore, the polyphenolic phytochemicals in the pomegranate can play an important role in the modulation of inflammatory cell signaling in colon cancer cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ellagitannins, ellagic acid and vascular health.

              Hydrolysable tannins are phenolic phytochemicals that show high antioxidant and free-radical scavenging activities. For this reason their potential effects preventing oxidative related diseases, such as cardiovascular diseases, have been largely studied. In vitro studies show that ellagitannins, at concentrations in the range 10-100 μM, show some relevant anti-atherogenic, anti-thrombotic, anti-inflammatory and anti-angiogenic effects, supporting the molecular mechanisms for the vascular health benefits. While there is good evidence supporting the vascular effects in vitro, the evidence on animal models or humans is much scarcer. The in vitro results often do not match the findings in the in vivo studies. This could be explained by the low bioavailability of the antioxidant ellagitannins and ellagic acid. The main ellagitannin metabolites circulating in plasma are ellagic acid microbiota metabolites known as urolithins, and they have lost their free-radical scavenging activity. They are present in plasma as glucuronide or sulphate conjugates, at concentrations in the nM range. Future studies should focus in the bioavailable metabolites, urolithins, and in the form (conjugated with glucuronic acid or sulphate) and concentrations (nM range) in which they are found in plasma. In this review we critically discuss the role of ellagitannins and ellagic acid on vascular health. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                5 August 2013
                : 8
                : 8
                : e71762
                Affiliations
                [1 ]Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, Milano, Italy
                [2 ]Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
                [3 ]Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
                Virginia Tech, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FM EB MDA. Performed the experiments: ES UV GR EC CB LB ST MG. Analyzed the data: MDA ES GR UV. Contributed reagents/materials/analysis tools: MDA EB GR FM. Wrote the paper: EB MDA FM GR.

                Article
                PONE-D-13-16881
                10.1371/journal.pone.0071762
                3733869
                23940786
                f7925be5-322e-461c-b121-bf69d2f6945a
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 April 2013
                : 26 June 2013
                Page count
                Pages: 12
                Funding
                The present research was partially funded by “Research Center for Characterization and Safe Use of Natural Compounds-G. Galli”. No additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immunity
                Inflammation
                Plant Science
                Plant Biochemistry
                Secondary Metabolism
                Chemistry
                Medicinal Chemistry
                Phytochemistry
                Medicine
                Complementary and Alternative Medicine
                Drugs and Devices
                Pharmacodynamics
                Gastroenterology and Hepatology
                Stomach and Duodenum
                Peptic Ulcer Disease

                Uncategorized
                Uncategorized

                Comments

                Comment on this article