23
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relation of Serum Copper Status to Survival in COVID-19

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The trace element copper (Cu) is part of our nutrition and essentially needed for several cuproenzymes that control redox status and support the immune system. In blood, the ferroxidase ceruloplasmin (CP) accounts for the majority of circulating Cu and serves as transport protein. Both Cu and CP behave as positive, whereas serum selenium (Se) and its transporter selenoprotein P (SELENOP) behave as negative acute phase reactants. In view that coronavirus disease (COVID-19) causes systemic inflammation, we hypothesized that biomarkers of Cu and Se status are regulated inversely, in relation to disease severity and mortality risk. Serum samples from COVID-19 patients were analysed for Cu by total reflection X-ray fluorescence and CP was quantified by a validated sandwich ELISA. The two Cu biomarkers correlated positively in serum from patients with COVID-19 (R = 0.42, p < 0.001). Surviving patients showed higher mean serum Cu and CP concentrations in comparison to non-survivors ([mean+/−SEM], Cu; 1475.9+/−22.7 vs. 1317.9+/−43.9 µg/L; p < 0.001, CP; 547.2.5+/−19.5 vs. 438.8+/−32.9 mg/L, p = 0.086). In contrast to expectations, total serum Cu and Se concentrations displayed a positive linear correlation in the patient samples analysed (R = 0.23, p = 0.003). Serum CP and SELENOP levels were not interrelated. Applying receiver operating characteristics (ROC) curve analysis, the combination of Cu and SELENOP with age outperformed other combinations of parameters for predicting risk of death, yielding an AUC of 95.0%. We conclude that the alterations in serum biomarkers of Cu and Se status in COVID-19 are not compatible with a simple acute phase response, and that serum Cu and SELENOP levels contribute to a good prediction of survival. Adjuvant supplementation in patients with diagnostically proven deficits in Cu or Se may positively influence disease course, as both increase in survivors and are of crucial importance for the immune response and antioxidative defence systems.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: not found
          • Article: not found

          Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            pROC: an open-source package for R and S+ to analyze and compare ROC curves

            Background Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface. Results With data previously imported into the R or S+ environment, the pROC package builds ROC curves and includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows how to perform a typical ROC analysis with pROC. Conclusions pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cytokine storm and leukocyte changes in mild versus severe SARS‐CoV‐2 infection: Review of 3939 COVID‐19 patients in China and emerging pathogenesis and therapy concepts

              Abstract Clinical evidence indicates that the fatal outcome observed with severe acute respiratory syndrome‐coronavirus‐2 infection often results from alveolar injury that impedes airway capacity and multi‐organ failure—both of which are associated with the hyperproduction of cytokines, also known as a cytokine storm or cytokine release syndrome. Clinical reports show that both mild and severe forms of disease result in changes in circulating leukocyte subsets and cytokine secretion, particularly IL‐6, IL‐1β, IL‐10, TNF, GM‐CSF, IP‐10 (IFN‐induced protein 10), IL‐17, MCP‐3, and IL‐1ra. Not surprising, therapies that target the immune response and curtail the cytokine storm in coronavirus 2019 (COVID‐19) patients have become a focus of recent clinical trials. Here we review reports on leukocyte and cytokine data associated with COVID‐19 disease in 3939 patients in China and describe emerging data on immunopathology. With an emphasis on immune modulation, we also look at ongoing clinical studies aimed at blocking proinflammatory cytokines; transfer of immunosuppressive mesenchymal stem cells; use of convalescent plasma transfusion; as well as immunoregulatory therapy and traditional Chinese medicine regimes. In examining leukocyte and cytokine activity in COVID‐19, we focus in particular on how these levels are altered as the disease progresses (neutrophil NETosis, macrophage, T cell response, etc.) and proposed consequences to organ pathology (coagulopathy, etc.). Viral and host interactions are described to gain further insight into leukocyte biology and how dysregulated cytokine responses lead to disease and/or organ damage. By better understanding the mechanisms that drive the intensity of a cytokine storm, we can tailor treatment strategies at specific disease stages and improve our response to this worldwide public health threat.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                31 May 2021
                June 2021
                : 13
                : 6
                : 1898
                Affiliations
                [1 ]Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-10115 Berlin, Germany; julian.hackler@ 123456charite.de (J.H.); raban.heller@ 123456med.uni-heidelberg.de (R.A.H.); qian.sun@ 123456charite.de (Q.S.)
                [2 ]Bundeswehr Hospital Berlin, Clinic of Traumatology and Orthopaedics, D-10115 Berlin, Germany
                [3 ]Department of General Practice and Health Services Research, Heidelberg University Hospital, D-69120 Heidelberg, Germany
                [4 ]ATORG, Center for Orthopaedics, Aschaffenburg Trauma and Orthopaedic Research Group, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, D-63739 Aschaffenburg, Germany; schwarzer27@ 123456gmail.com (M.S.); Joachim.Diegmann@ 123456klinikum-ab-alz.de (J.D.); manuel.bachmann.md@ 123456gmail.com (M.B.)
                [5 ]Orthopedic and Trauma Surgery, Frohsinnstraße 12, D-63739 Aschaffenburg, Germany; email@ 123456arash.de
                Author notes
                [* ]Correspondence: lutz.schomburg@ 123456charite.de ; Tel.: +49-30-450524289; Fax: +49-30-4507524289
                Author information
                https://orcid.org/0000-0001-8006-9742
                https://orcid.org/0000-0002-4458-6555
                https://orcid.org/0000-0001-9445-1555
                Article
                nutrients-13-01898
                10.3390/nu13061898
                8229409
                34072977
                f6797433-d9d5-474d-a25f-5a11d2a570b2
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 29 April 2021
                : 30 May 2021
                Categories
                Article

                Nutrition & Dietetics
                trace element,inflammation,ceruloplasmin,micronutrient,covid-19
                Nutrition & Dietetics
                trace element, inflammation, ceruloplasmin, micronutrient, covid-19

                Comments

                Comment on this article