31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d7620497e308">History and archaeology have a well-established engagement with issues of premodern societal development and the interaction between physical and cultural environments; together, they offer a holistic view that can generate insights into the nature of cultural resilience and adaptation, as well as responses to catastrophe. Grasping the challenges that climate change presents and evolving appropriate policies that promote and support mitigation and adaptation requires not only an understanding of the science and the contemporary politics, but also an understanding of the history of the societies affected and in particular of their cultural logic. But whereas archaeologists have developed productive links with the paleosciences, historians have, on the whole, remained muted voices in the debate until recently. Here, we suggest several ways in which a consilience between the historical sciences and the natural sciences, including attention to even distant historical pasts, can deepen contemporary understanding of environmental change and its effects on human societies. </p>

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Timing and climate forcing of volcanic eruptions for the past 2,500 years.

          Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            'Little Ice Age' summer temperature variations: their nature and relevance to recent global warming trends

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Old World megadroughts and pluvials during the Common Era

              An atlas of megadroughts in Europe and in the Mediterranean Basin during the Common Era provides insights into climate variability.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 12 2018
                :
                :
                : 201716912
                Article
                10.1073/pnas.1716912115
                5879668
                29531084
                f66addf8-fe15-4741-94ab-5fea9f5e3413
                © 2018
                History

                Comments

                Comment on this article