14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary Antioxidant Vitamins and Minerals and Breast Cancer Risk: Prospective Results from the SUN Cohort

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is growing interest in natural antioxidants and their potential effects on breast cancer (BC). Epidemiological evidence, however, is inconsistent. We prospectively evaluated the association between dietary intake of vitamins A, C, and E, selenium, and zinc and BC among 9983 female participants from the SUN Project, a Mediterranean cohort of university graduates. Participants completed a food frequency questionnaire at baseline, and biennial follow-up information about incident BC diagnosis was collected. Cases were ascertained through revision of medical charts and consultation of the National Death Index. Cox proportional hazards models were used to estimate multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CI). During an average follow-up of 11.3 years, 107 incident BC cases were confirmed. The multivariable HRs (95% CI) for BC comparing extreme tertiles of energy-adjusted dietary intakes were 1.07 (0.64–1.77; P trend = 0.673) for vitamin A, 1.00 (0.58–1.71; P trend = 0.846) for vitamin C, 0.92 (0.55–1.54; P trend = 0.728) for vitamin E, 1.37 (0.85–2.20; P trend = 0.135) for selenium, and 1.01 (0.61–1.69; P trend = 0.939) for zinc. Stratified analyses showed an inverse association between vitamin E intake and postmenopausal BC (HR T3 vs. T1 = 0.35; 95% CI, 0.14–0.86; P trend = 0.027). Our results did not suggest significant protective associations between dietary vitamins A, C, and E, selenium, or zinc and BC risk.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016

          Summary Background Monitoring levels and trends in premature mortality is crucial to understanding how societies can address prominent sources of early death. The Global Burden of Disease 2016 Study (GBD 2016) provides a comprehensive assessment of cause-specific mortality for 264 causes in 195 locations from 1980 to 2016. This assessment includes evaluation of the expected epidemiological transition with changes in development and where local patterns deviate from these trends. Methods We estimated cause-specific deaths and years of life lost (YLLs) by age, sex, geography, and year. YLLs were calculated from the sum of each death multiplied by the standard life expectancy at each age. We used the GBD cause of death database composed of: vital registration (VR) data corrected for under-registration and garbage coding; national and subnational verbal autopsy (VA) studies corrected for garbage coding; and other sources including surveys and surveillance systems for specific causes such as maternal mortality. To facilitate assessment of quality, we reported on the fraction of deaths assigned to GBD Level 1 or Level 2 causes that cannot be underlying causes of death (major garbage codes) by location and year. Based on completeness, garbage coding, cause list detail, and time periods covered, we provided an overall data quality rating for each location with scores ranging from 0 stars (worst) to 5 stars (best). We used robust statistical methods including the Cause of Death Ensemble model (CODEm) to generate estimates for each location, year, age, and sex. We assessed observed and expected levels and trends of cause-specific deaths in relation to the Socio-demographic Index (SDI), a summary indicator derived from measures of average income per capita, educational attainment, and total fertility, with locations grouped into quintiles by SDI. Relative to GBD 2015, we expanded the GBD cause hierarchy by 18 causes of death for GBD 2016. Findings The quality of available data varied by location. Data quality in 25 countries rated in the highest category (5 stars), while 48, 30, 21, and 44 countries were rated at each of the succeeding data quality levels. Vital registration or verbal autopsy data were not available in 27 countries, resulting in the assignment of a zero value for data quality. Deaths from non-communicable diseases (NCDs) represented 72·3% (95% uncertainty interval [UI] 71·2–73·2) of deaths in 2016 with 19·3% (18·5–20·4) of deaths in that year occurring from communicable, maternal, neonatal, and nutritional (CMNN) diseases and a further 8·43% (8·00–8·67) from injuries. Although age-standardised rates of death from NCDs decreased globally between 2006 and 2016, total numbers of these deaths increased; both numbers and age-standardised rates of death from CMNN causes decreased in the decade 2006–16—age-standardised rates of deaths from injuries decreased but total numbers varied little. In 2016, the three leading global causes of death in children under-5 were lower respiratory infections, neonatal preterm birth complications, and neonatal encephalopathy due to birth asphyxia and trauma, combined resulting in 1·80 million deaths (95% UI 1·59 million to 1·89 million). Between 1990 and 2016, a profound shift toward deaths at older ages occurred with a 178% (95% UI 176–181) increase in deaths in ages 90–94 years and a 210% (208–212) increase in deaths older than age 95 years. The ten leading causes by rates of age-standardised YLL significantly decreased from 2006 to 2016 (median annualised rate of change was a decrease of 2·89%); the median annualised rate of change for all other causes was lower (a decrease of 1·59%) during the same interval. Globally, the five leading causes of total YLLs in 2016 were cardiovascular diseases; diarrhoea, lower respiratory infections, and other common infectious diseases; neoplasms; neonatal disorders; and HIV/AIDS and tuberculosis. At a finer level of disaggregation within cause groupings, the ten leading causes of total YLLs in 2016 were ischaemic heart disease, cerebrovascular disease, lower respiratory infections, diarrhoeal diseases, road injuries, malaria, neonatal preterm birth complications, HIV/AIDS, chronic obstructive pulmonary disease, and neonatal encephalopathy due to birth asphyxia and trauma. Ischaemic heart disease was the leading cause of total YLLs in 113 countries for men and 97 countries for women. Comparisons of observed levels of YLLs by countries, relative to the level of YLLs expected on the basis of SDI alone, highlighted distinct regional patterns including the greater than expected level of YLLs from malaria and from HIV/AIDS across sub-Saharan Africa; diabetes mellitus, especially in Oceania; interpersonal violence, notably within Latin America and the Caribbean; and cardiomyopathy and myocarditis, particularly in eastern and central Europe. The level of YLLs from ischaemic heart disease was less than expected in 117 of 195 locations. Other leading causes of YLLs for which YLLs were notably lower than expected included neonatal preterm birth complications in many locations in both south Asia and southeast Asia, and cerebrovascular disease in western Europe. Interpretation The past 37 years have featured declining rates of communicable, maternal, neonatal, and nutritional diseases across all quintiles of SDI, with faster than expected gains for many locations relative to their SDI. A global shift towards deaths at older ages suggests success in reducing many causes of early death. YLLs have increased globally for causes such as diabetes mellitus or some neoplasms, and in some locations for causes such as drug use disorders, and conflict and terrorism. Increasing levels of YLLs might reflect outcomes from conditions that required high levels of care but for which effective treatments remain elusive, potentially increasing costs to health systems. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dietary pattern analysis: a new direction in nutritional epidemiology.

            Frank Hu (2002)
            Recently, dietary pattern analysis has emerged as an alternative and complementary approach to examining the relationship between diet and the risk of chronic diseases. Instead of looking at individual nutrients or foods, pattern analysis examines the effects of overall diet. Conceptually, dietary patterns represent a broader picture of food and nutrient consumption, and may thus be more predictive of disease risk than individual foods or nutrients. Several studies have suggested that dietary patterns derived from factor or cluster analysis predict disease risk or mortality. In addition, there is growing interest in using dietary quality indices to evaluate whether adherence to a certain dietary pattern (e.g. Mediterranean pattern) or current dietary guidelines lowers the risk of disease. In this review, we describe the rationale for studying dietary patterns, and discuss quantitative methods for analysing dietary patterns and their reproducibility and validity, and the available evidence regarding the relationship between major dietary patterns and the risk of cardiovascular disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adherence to a Mediterranean diet and survival in a Greek population.

              Adherence to a Mediterranean diet may improve longevity, but relevant data are limited. We conducted a population-based, prospective investigation involving 22,043 adults in Greece who completed an extensive, validated, food-frequency questionnaire at base line. Adherence to the traditional Mediterranean diet was assessed by a 10-point Mediterranean-diet scale that incorporated the salient characteristics of this diet (range of scores, 0 to 9, with higher scores indicating greater adherence). We used proportional-hazards regression to assess the relation between adherence to the Mediterranean diet and total mortality, as well as mortality due to coronary heart disease and mortality due to cancer, with adjustment for age, sex, body-mass index, physical-activity level, and other potential confounders. During a median of 44 months of follow-up, there were 275 deaths. A higher degree of adherence to the Mediterranean diet was associated with a reduction in total mortality (adjusted hazard ratio for death associated with a two-point increment in the Mediterranean-diet score, 0.75 [95 percent confidence interval, 0.64 to 0.87]). An inverse association with greater adherence to this diet was evident for both death due to coronary heart disease (adjusted hazard ratio, 0.67 [95 percent confidence interval, 0.47 to 0.94]) and death due to cancer (adjusted hazard ratio, 0.76 [95 percent confidence interval, 0.59 to 0.98]). Associations between individual food groups contributing to the Mediterranean-diet score and total mortality were generally not significant. Greater adherence to the traditional Mediterranean diet is associated with a significant reduction in total mortality. Copyright 2003 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                24 February 2021
                March 2021
                : 10
                : 3
                : 340
                Affiliations
                [1 ]Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain; cflazaro@ 123456unav.es (C.I.F.-L.); mamartinez@ 123456unav.es (M.Á.M.-G.); iaguilera@ 123456alumni.unav.es (I.A.-B.); ageas@ 123456unav.es (A.G.); mcanela@ 123456unav.es (M.R.-C.); aromanos@ 123456alumni.unav.es (A.R.-N.)
                [2 ]IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
                [3 ]CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
                [4 ]Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
                Author notes
                [* ]Correspondence: etoledo@ 123456unav.es ; Tel.: +34-948-425-600 (ext. 806224)
                Author information
                https://orcid.org/0000-0003-2366-2528
                https://orcid.org/0000-0002-3917-9808
                https://orcid.org/0000-0002-9484-7303
                https://orcid.org/0000-0002-7684-2787
                https://orcid.org/0000-0002-9694-7607
                https://orcid.org/0000-0002-6263-4434
                Article
                antioxidants-10-00340
                10.3390/antiox10030340
                7996327
                33668391
                f5e2f6db-28f5-4337-a1d3-7f1ff7382c27
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 January 2021
                : 20 February 2021
                Categories
                Article

                breast cancer,antioxidants,vitamin a,vitamin c,vitamin e,selenium,zinc,sun cohort,mediterranean population

                Comments

                Comment on this article