1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel hemizygous loss‐of‐function variant in NONO identified in a South African boy

        1 , 1 , 2
      American Journal of Medical Genetics Part A
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hemizygous loss-of-function variants in the non-POU domain-containing, octamer-binding gene, NONO, cause X-linked mental retardation syndrome 34 (MRXS34). Here, we describe the 12th patient in the literature with this rare syndrome, the first affected male from sub-Saharan Africa. This South African patient presented with dysmorphic features, congenital cardiac abnormalities (Ebstein's anomaly, left ventricular non-compaction, and a VSD), and developmental delay. He was enrolled in our "Undiagnosed Disease Programme." Exome sequencing identified a novel hemizygous 14bp deletion in NONO, which he inherited from his unaffected, healthy mother. His features overlap with the previous patients described, lending more support to the assertion that MRXS34 is a recognizable, albeit rare, syndrome. The cardiac anomalies are particularly distinctive, which combined with a variety of other associated features, should prompt the inclusion of NONO-associated MRXS34 in the differential diagnosis.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE

            Abstract EVIDENCE, an automated variant prioritization system, has been developed to facilitate whole exome sequencing analyses. This study investigated the diagnostic yield of EVIDENCE in patients with suspected genetic disorders. DNA from 330 probands (age range, 0‐68 years) with suspected genetic disorders were subjected to whole exome sequencing. Candidate variants were identified by EVIDENCE and confirmed by testing family members and/or clinical reassessments. EVIDENCE reported a total 228 variants in 200 (60.6%) of the 330 probands. The average number of organs involved per patient was 4.5 ± 5.0. After clinical reassessment and/or family member testing, 167 variants were identified in 141 probands (42.7%), including 105 novel variants. These variants were confirmed as being responsible for 121 genetic disorders. A total of 103 (61.7%) of the 167 variants in 95 patients were classified as pathogenic or probably to be pathogenic before, and 161 (96.4%) variants in 137 patients (41.5%) after, clinical assessment and/or family member testing. Factor associated with a variant being regarded as causative includes similar symptom scores of a gene variant to the phenotype of the patient. This new, automated variant interpretation system facilitated the diagnosis of various genetic diseases with a 42.7% diagnostic yield.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects.

              The NONO protein has been characterized as an important transcriptional regulator in diverse cellular contexts. Here we show that loss of NONO function is a likely cause of human intellectual disability and that NONO-deficient mice have cognitive and affective deficits. Correspondingly, we find specific defects at inhibitory synapses, where NONO regulates synaptic transcription and gephyrin scaffold structure. Our data identify NONO as a possible neurodevelopmental disease gene and highlight the key role of the DBHS protein family in functional organization of GABAergic synapses.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                American Journal of Medical Genetics Part A
                American J of Med Genetics Pt A
                Wiley
                1552-4825
                1552-4833
                January 2022
                September 22 2021
                January 2022
                : 188
                : 1
                : 373-376
                Affiliations
                [1 ]Division of Molecular Biology and Human Genetics Stellenbosch University Cape Town South Africa
                [2 ]Department of Medical Genetics Tygerberg Hospital Cape Town South Africa
                Article
                10.1002/ajmg.a.62509
                34549882
                f59569f3-26f9-40d8-98f6-81de010f04d9
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article