14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of Varying Plantarflexion Stiffness of Ankle-Foot Orthosis on Achilles Tendon and Propulsion Force During Gait.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An ankle-foot orthosis (AFO) with a plantarflexion resistance function, improves post-stroke gait. An AFO with a plantarflexion resistance function not only affects the first rocker function and the weight acceptance but also the late stance phase. Achilles tendon extension is important for ankle joint function and for forward propulsion during the late stance phase; however, the effect of an AFO with a plantarflexion resistance function on the Achilles tendon is unclear. The purpose of this study was to investigate the effect of plantarflexion resistance on the extension of the Achilles tendon and the forward-propulsive force. Herein, 10 healthy adult males participated who walked under three different conditions: a no-AFO condition and two AFO conditions that had different levels of plantarflexion resistance (P1 and P2). The stiffness value of the P1 and P2 conditions was 0.56 and 1.47 Nm/°, respectively. A three-dimensional (3D) motion analysis system and a musculoskeletal model were used to assess the tendon-length change, the ground reaction force, kinematics, and kinetics data. The change in Achilles tendon length was significantly lower in the P1 and P2 conditions than the no-AFO condition. Furthermore, changes in the length of the Achilles tendon significantly decreased in the P2 condition when compared with that in the P1 condition. The peak anterior ground reaction force was significantly lower in the P2 condition than the no-AFO condition. These results suggest that excessive assist provided by an AFO prevents efficient gait by decreasing both the forward-propulsive force and tendon function.

          Related collections

          Author and article information

          Journal
          IEEE Trans Neural Syst Rehabil Eng
          IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
          Institute of Electrical and Electronics Engineers (IEEE)
          1558-0210
          1534-4320
          October 2020
          : 28
          : 10
          Article
          10.1109/TNSRE.2020.3020564
          32866100
          f56bd893-f124-4d02-9094-aecec552c6ed
          History

          Comments

          Comment on this article