24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Specific armadillo repeat sequences facilitate β-catenin nuclear transport in live cells via direct binding to nucleoporins Nup62, Nup153, and RanBP2/Nup358.

      The Journal of Biological Chemistry
      Active Transport, Cell Nucleus, physiology, Amino Acid Motifs, Animals, Lymphoid Enhancer-Binding Factor 1, genetics, metabolism, Mice, Molecular Chaperones, NIH 3T3 Cells, Nuclear Pore, Nuclear Pore Complex Proteins, Phosphorylation, Protein Binding, Wnt Signaling Pathway, beta Catenin

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          β-Catenin transduces the Wnt signal from the membrane to nucleus, and certain gene mutations trigger its nuclear accumulation leading to cell transformation and cancer. β-Catenin shuttles between the nucleus and cytoplasm independent of classical Ran/transport receptor pathways, and this movement was previously hypothesized to involve the central Armadillo (Arm) domain. Fluorescence recovery after photobleaching (FRAP) assays were used to delineate functional transport regions of the Arm domain in living cells. The strongest nuclear import/export activity was mapped to Arm repeats R10-12 using both in vivo FRAP and in vitro export assays. By comparison, Arm repeats R3-8 of β-catenin were highly active for nuclear import but displayed a comparatively weak export activity. We show for the first time using purified components that specific Arm sequences of β-catenin interact directly in vitro with the FG repeats of the nuclear pore complex (NPC) components Nup62, Nup98, and Nup153, indicating an independent ability of β-catenin to traverse the NPC. Moreover, a proteomics screen identified RanBP2/Nup358 as a binding partner of Arm R10-12, and β-catenin was confirmed to interact with endogenous and ectopic forms of Nup358. We further demonstrate that knock-down of endogenous Nup358 and Nup62 impeded the rate of nuclear import/export of β-catenin to a greater extent than that of importin-β. The Arm R10-12 sequence facilitated transport even when β-catenin was bound to the Arm-binding partner LEF-1, and its activity was stimulated by phosphorylation at Tyr-654. These findings provide functional evidence that the Arm domain contributes to regulated β-catenin transport through direct interaction with the NPC.

          Related collections

          Author and article information

          Comments

          Comment on this article