5
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Innovation and possible long-term impact driven by COVID-19: Manufacturing, personal protective equipment and digital technologies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is known that discrete events causing extreme societal and economic pressures as well as technological opportunity are major driving factors of innovation. Due to the presence of both of these factors during the COVID-19 pandemic it was hypothesized that there would be significant on-going innovation throughout society during the pandemic, with many of the innovations having the ability to have long-term societal impact. Analysis of literature and patent databases determined sectors of accelerated innovation to include manufacturing, personal protective equipment and digital technologies. The ability of flexible and advanced manufacturing technologies to provide more adaptable production capabilities that are less susceptible to disruption, make it likely that these technologies will be incorporated further, changing the way many manufacturing firms operate. Collaboration has increased, demonstrating increases in problem-solving efficiency; however, concerns around intellectual property is likely to reduce the long-term impact of these procedural changes. Advancements in personal protective equipment and disinfection technologies may have the long-term impact of reducing waste production and triggering changes in cleaning protocols throughout society. Digital technologies such as telemedicine, data collection, artificial intelligence and communication technologies were found to have undergone significant innovation, with possible impacts such as large-scale systemic shifts, and changes in how governments, corporations, the scientific community and the public interact.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status

          An acute respiratory disease, caused by a novel coronavirus (SARS-CoV-2, previously known as 2019-nCoV), the coronavirus disease 2019 (COVID-19) has spread throughout China and received worldwide attention. On 30 January 2020, World Health Organization (WHO) officially declared the COVID-19 epidemic as a public health emergency of international concern. The emergence of SARS-CoV-2, since the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, marked the third introduction of a highly pathogenic and large-scale epidemic coronavirus into the human population in the twenty-first century. As of 1 March 2020, a total of 87,137 confirmed cases globally, 79,968 confirmed in China and 7169 outside of China, with 2977 deaths (3.4%) had been reported by WHO. Meanwhile, several independent research groups have identified that SARS-CoV-2 belongs to β-coronavirus, with highly identical genome to bat coronavirus, pointing to bat as the natural host. The novel coronavirus uses the same receptor, angiotensin-converting enzyme 2 (ACE2) as that for SARS-CoV, and mainly spreads through the respiratory tract. Importantly, increasingly evidence showed sustained human-to-human transmission, along with many exported cases across the globe. The clinical symptoms of COVID-19 patients include fever, cough, fatigue and a small population of patients appeared gastrointestinal infection symptoms. The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Currently, there are few specific antiviral strategies, but several potent candidates of antivirals and repurposed drugs are under urgent investigation. In this review, we summarized the latest research progress of the epidemiology, pathogenesis, and clinical characteristics of COVID-19, and discussed the current treatment and scientific advancements to combat the epidemic novel coronavirus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed

            The 2019 novel coronavirus (2019-nCoV) pneumonia, believed to have originated in a wet market in Wuhan, Hubei province, China at the end of 2019, has gained intense attention nationwide and globally. To lower the risk of further disease transmission, the authority in Wuhan suspended public transport indefinitely from Jan 23, 2020; similar measures were adopted soon in many other cities in China. As of Jan 25, 2020, 30 Chinese provinces, municipalities, and autonomous regions covering over 1·3 billion people have initiated first-level responses to major public health emergencies. A range of measures has been urgently adopted,1, 2 such as early identification and isolation of suspected and diagnosed cases, contact tracing and monitoring, collection of clinical data and biological samples from patients, dissemination of regional and national diagnostic criteria and expert treatment consensus, establishment of isolation units and hospitals, and prompt provision of medical supplies and external expert teams to Hubei province. The emergence of the 2019-nCoV pneumonia has parallels with the 2003 outbreak of severe acute respiratory syndrome (SARS), which was caused by another coronavirus that killed 349 of 5327 patients with confirmed infection in China. 3 Although the diseases have different clinical presentations,1, 4 the infectious cause, epidemiological features, fast transmission pattern, and insufficient preparedness of health authorities to address the outbreaks are similar. So far, mental health care for the patients and health professionals directly affected by the 2019-nCoV epidemic has been under-addressed, although the National Health Commission of China released the notification of basic principles for emergency psychological crisis interventions for the 2019-nCoV pneumonia on Jan 26, 2020. 5 This notification contained a reference to mental health problems and interventions that occurred during the 2003 SARS outbreak, and mentioned that mental health care should be provided for patients with 2019-nCoV pneumonitis, close contacts, suspected cases who are isolated at home, patients in fever clinics, families and friends of affected people, health professionals caring for infected patients, and the public who are in need. To date, epidemiological data on the mental health problems and psychiatric morbidity of those suspected or diagnosed with the 2019-nCoV and their treating health professionals have not been available; therefore how best to respond to challenges during the outbreak is unknown. The observations of mental health consequences and measures taken during the 2003 SARS outbreak could help inform health authorities and the public to provide mental health interventions to those who are in need. Patients with confirmed or suspected 2019-nCoV may experience fear of the consequences of infection with a potentially fatal new virus, and those in quarantine might experience boredom, loneliness, and anger. Furthermore, symptoms of the infection, such as fever, hypoxia, and cough, as well as adverse effects of treatment, such as insomnia caused by corticosteroids, could lead to worsening anxiety and mental distress. 2019-nCoV has been repeatedly described as a killer virus, for example on WeChat, which has perpetuated the sense of danger and uncertainty among health workers and the public. In the early phase of the SARS outbreak, a range of psychiatric morbidities, including persistent depression, anxiety, panic attacks, psychomotor excitement, psychotic symptoms, delirium, and even suicidality, were reported.6, 7 Mandatory contact tracing and 14 days quarantine, which form part of the public health responses to the 2019-nCoV pneumonia outbreak, could increase patients' anxiety and guilt about the effects of contagion, quarantine, and stigma on their families and friends. Health professionals, especially those working in hospitals caring for people with confirmed or suspected 2019-nCoV pneumonia, are vulnerable to both high risk of infection and mental health problems. They may also experience fear of contagion and spreading the virus to their families, friends, or colleagues. Health workers in a Beijing hospital who were quarantined, worked in high-risk clinical settings such as SARS units, or had family or friends who were infected with SARS, had substantially more post-traumatic stress symptoms than those without these experiences. 8 Health professionals who worked in SARS units and hospitals during the SARS outbreak also reported depression, anxiety, fear, and frustration.6, 9 Despite the common mental health problems and disorders found among patients and health workers in such settings, most health professionals working in isolation units and hospitals do not receive any training in providing mental health care. Timely mental health care needs to be developed urgently. Some methods used in the SARS outbreak could be helpful for the response to the 2019-nCoV outbreak. First, multidisciplinary mental health teams established by health authorities at regional and national levels (including psychiatrists, psychiatric nurses, clinical psychologists, and other mental health workers) should deliver mental health support to patients and health workers. Specialised psychiatric treatments and appropriate mental health services and facilities should be provided for patients with comorbid mental disorders. Second, clear communication with regular and accurate updates about the 2019-nCoV outbreak should be provided to both health workers and patients in order to address their sense of uncertainty and fear. Treatment plans, progress reports, and health status updates should be given to both patients and their families. Third, secure services should be set up to provide psychological counselling using electronic devices and applications (such as smartphones and WeChat) for affected patients, as well as their families and members of the public. Using safe communication channels between patients and families, such as smartphone communication and WeChat, should be encouraged to decrease isolation. Fourth, suspected and diagnosed patients with 2019-nCoV pneumonia as well as health professionals working in hospitals caring for infected patients should receive regular clinical screening for depression, anxiety, and suicidality by mental health workers. Timely psychiatric treatments should be provided for those presenting with more severe mental health problems. For most patients and health workers, emotional and behavioural responses are part of an adaptive response to extraordinary stress, and psychotherapy techniques such as those based on the stress-adaptation model might be helpful.7, 10 If psychotropic medications are used, such as those prescribed by psychiatrists for severe psychiatric comorbidities, 6 basic pharmacological treatment principles of ensuring minimum harm should be followed to reduce harmful effects of any interactions with 2019-nCoV and its treatments. In any biological disaster, themes of fear, uncertainty, and stigmatisation are common and may act as barriers to appropriate medical and mental health interventions. Based on experience from past serious novel pneumonia outbreaks globally and the psychosocial impact of viral epidemics, the development and implementation of mental health assessment, support, treatment, and services are crucial and pressing goals for the health response to the 2019-nCoV outbreak. © 2020 VW Pics/Science Photo Library 2020 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe

              Following the detection of the new coronavirus1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics of coronavirus disease 2019 (COVID-19). In response, many European countries have implemented non-pharmaceutical interventions, such as the closure of schools and national lockdowns. Here we study the effect of major interventions across 11 European countries for the period from the start of the COVID-19 epidemics in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks previously, allowing for the time lag between infection and death. We use partial pooling of information between countries, with both individual and shared effects on the time-varying reproduction number (Rt). Pooling allows for more information to be used, helps to overcome idiosyncrasies in the data and enables more-timely estimates. Our model relies on fixed estimates of some epidemiological parameters (such as the infection fatality rate), does not include importation or subnational variation and assumes that changes in Rt are an immediate response to interventions rather than gradual changes in behaviour. Amidst the ongoing pandemic, we rely on death data that are incomplete, show systematic biases in reporting and are subject to future consolidation. We estimate that-for all of the countries we consider here-current interventions have been sufficient to drive Rt below 1 (probability Rt < 1.0 is greater than 99%) and achieve control of the epidemic. We estimate that across all 11 countries combined, between 12 and 15 million individuals were infected with SARS-CoV-2 up to 4 May 2020, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions-and lockdowns in particular-have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.
                Bookmark

                Author and article information

                Journal
                Technol Soc
                Technol Soc
                Technology in Society
                Elsevier Ltd.
                0160-791X
                0160-791X
                27 February 2021
                May 2021
                27 February 2021
                : 65
                : 101541
                Affiliations
                [a ]Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
                [b ]Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
                Author notes
                []Corresponding author. 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
                Article
                S0160-791X(21)00016-6 101541
                10.1016/j.techsoc.2021.101541
                9754673
                36540655
                f41701a6-c0ba-4ada-acc6-4db3d8f8df70
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 12 August 2020
                : 5 October 2020
                : 16 February 2021
                Categories
                Article

                covid-19,technological innovation,telemedicine,artificial intelligence,3d printing

                Comments

                Comment on this article