4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Metaverse as a Virtual Model of Platform Urbanism: Its Converging AIoT, XReality, Neurotech, and Nanobiotech and Their Applications, Challenges, and Risks

      Smart Cities
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With their exponentially rising computational power, digital platforms are heralding a new era of hybrid intelligence. There has recently been much enthusiasm and hype that the Metaverse has the potential to unlock hybrid intelligence. This is premised on the idea that the Metaverse represents an applied convergence of Artificial Intelligence of Things (AIoT) and Extended Reality (XR) that intersects with urbanism in terms of the distinctive features of platform-mediated everyday life experiences in cities. However, social interaction and its resulting social organization in the Metaverse are mediated and governed by algorithms and thus submitted to—a dream of—complete logical ordering. This raises a plethora of concerns related to the systemic collection and algorithmic processing of users’ personal, brain, and biometric data, i.e., profound societal—and the hardest to predict ethical—implications. Therefore, this study analyzes and synthesizes a large body of scientific literature on the unfolding convergence of AIoT and XR technologies, neurotechnology, and nanobiotechnology in the realm of the Metaverse in order to derive a novel conceptual framework for the Metaverse as an envisioned virtual model of platform urbanism. Further, it examines the key challenges and risks of these converging technologies in relation to the Metaverse and beyond. This study employs thematic analysis and synthesis to cope with multidisciplinary literature. The analysis identifies seven themes: (1) Platformization, (2) platform urbanism, (3) virtual urbanism, (4) XR technologies, (5) AIoT technologies, (6) neurotechnology, and (7) nanobiotechnology. The synthesized evidence reveals that, while neurotechnology and nanobiotechnology have numerous benefits and promising prospects, they raise contentions and controversies stemming from their potential use to inflict harm to human users—if left unchecked—through the black box of the algorithmic mediation underpinning the Metaverse. The findings serve to steer the Metaverse to contribute to human flourishing and wellbeing by adhering to and upholding ethical principles as well as leveraging its underlying disruptive technologies in meaningful ways. They also aid scholars, practitioners, and policymakers in assessing the pros and cons of these technologies, especially their inevitable ramifications.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: found
          • Article: not found

          Lipid nanoparticles for mRNA delivery

          Messenger RNA (mRNA) has emerged as a new category of therapeutic agent to prevent and treat various diseases. To function in vivo, mRNA requires safe, effective and stable delivery systems that protect the nucleic acid from degradation and that allow cellular uptake and mRNA release. Lipid nanoparticles have successfully entered the clinic for the delivery of mRNA; in particular, lipid nanoparticle–mRNA vaccines are now in clinical use against coronavirus disease 2019 (COVID-19), which marks a milestone for mRNA therapeutics. In this Review, we discuss the design of lipid nanoparticles for mRNA delivery and examine physiological barriers and possible administration routes for lipid nanoparticle–mRNA systems. We then consider key points for the clinical translation of lipid nanoparticle–mRNA formulations, including good manufacturing practice, stability, storage and safety, and highlight preclinical and clinical studies of lipid nanoparticle–mRNA therapeutics for infectious diseases, cancer and genetic disorders. Finally, we give an outlook to future possibilities and remaining challenges for this promising technology. Lipid nanoparticle–mRNA formulations have entered the clinic as coronavirus disease 2019 (COVID-19) vaccines, marking an important milestone for mRNA therapeutics. This Review discusses lipid nanoparticle design for mRNA delivery, highlighting key points for clinical translation and preclinical studies of lipid nanoparticle–mRNA therapeutics for various diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            mRNA-based therapeutics--developing a new class of drugs.

            In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications. mRNA-based cancer immunotherapies and infectious disease vaccines have entered clinical development. Meanwhile, emerging novel approaches include in vivo delivery of IVT mRNA to replace or supplement proteins, IVT mRNA-based generation of pluripotent stem cells and genome engineering using IVT mRNA-encoded designer nucleases. This Review provides a comprehensive overview of the current state of mRNA-based drug technologies and their applications, and discusses the key challenges and opportunities in developing these into a new class of drugs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Algorithms of Oppression

                Bookmark

                Author and article information

                Journal
                Smart Cities
                Smart Cities
                MDPI AG
                2624-6511
                June 2023
                May 11 2023
                : 6
                : 3
                : 1345-1384
                Article
                10.3390/smartcities6030065
                f3c9122c-68f4-4d10-886f-2a7b2d6522f3
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article