9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Data Integration to Improve Real-world Health Outcomes Research for Non–Small Cell Lung Cancer in the United States: Descriptive and Qualitative Exploration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The integration of data from disparate sources could help alleviate data insufficiency in real-world studies and compensate for the inadequacies of single data sources and short-duration, small sample size studies while improving the utility of data for research.

          Objective

          This study aims to describe and evaluate a process of integrating data from several complementary sources to conduct health outcomes research in patients with non–small cell lung cancer (NSCLC). The integrated data set is also used to describe patient demographics, clinical characteristics, treatment patterns, and mortality rates.

          Methods

          This retrospective cohort study integrated data from 4 sources: administrative claims from the HealthCore Integrated Research Database, clinical data from a Cancer Care Quality Program (CCQP), clinical data from abstracted medical records (MRs), and mortality data from the US Social Security Administration. Patients with lung cancer who initiated second-line (2L) therapy between November 01, 2015, and April 13, 2018, were identified in the claims and CCQP data. Eligible patients were 18 years or older and received atezolizumab, docetaxel, erlotinib, nivolumab, pembrolizumab, pemetrexed, or ramucirumab in the 2L setting. The main analysis cohort included patients with claims data and data from at least one additional data source (CCQP or MR). Patients without integrated data (claims only) were reported separately. Descriptive and univariate statistics were reported.

          Results

          Data integration resulted in a main analysis cohort of 2195 patients with NSCLC; 2106 patients had CCQP and 407 patients had MR data. The claims-only cohort included 931 eligible patients. For the main analysis cohort, the mean age was 62.1 (SD 9.27) years, 48.56% (1066/2195) were female, the median length of follow-up was 6.8 months, and for 37.77% (829/2195), death was observed. For the claims-only cohort, the mean age was 66.6 (SD 12.69) years, 52.1% (485/931) were female, the median length of follow-up was 8.6 months, and for 29.3% (273/931), death was observed. The most frequent 2L treatment was immunotherapy (1094/2195, 49.84%), followed by platinum-based regimens (472/2195, 21.50%) and single-agent chemotherapy (441/2195, 20.09%); mean duration of 2L therapy was 5.6 (SD 4.9, median 4) months. We describe challenges and learnings from the data integration process, and the benefits of the integrated data set, which includes a richer set of clinical and outcome data to supplement the utilization metrics available in administrative claims.

          Conclusions

          The management of patients with NSCLC requires care from a multidisciplinary team, leading to a lack of a single aggregated data source in real-world settings. The availability of integrated clinical data from MRs, health plan claims, and other sources of clinical care may improve the ability to assess emerging treatments.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2020

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer

            Nivolumab, a fully human IgG4 programmed death 1 (PD-1) immune-checkpoint-inhibitor antibody, disrupts PD-1-mediated signaling and may restore antitumor immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer

              New England Journal of Medicine, 373(2), 123-135
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Cancer
                JMIR Cancer
                JC
                JMIR Cancer
                JMIR Publications (Toronto, Canada )
                2369-1999
                Apr-Jun 2021
                12 April 2021
                : 7
                : 2
                : e23161
                Affiliations
                [1 ] HealthCore Inc Wilmington, DE United States
                [2 ] Eli Lilly and Company Indianapolis, IN United States
                Author notes
                Corresponding Author: Michael Grabner mgrabner@ 123456healthcore.com
                Author information
                https://orcid.org/0000-0002-6521-1007
                https://orcid.org/0000-0001-8993-7024
                https://orcid.org/0000-0003-0317-5685
                https://orcid.org/0000-0003-2088-1004
                https://orcid.org/0000-0002-7034-0946
                https://orcid.org/0000-0002-6549-0069
                https://orcid.org/0000-0003-3631-3941
                Article
                v7i2e23161
                10.2196/23161
                8076987
                33843600
                f3abf8bd-ad90-43b8-b0c6-421f4fa44d8f
                ©Michael Grabner, Cliff Molife, Liya Wang, Katherine B Winfree, Zhanglin Lin Cui, Gebra Cuyun Carter, Lisa M Hess. Originally published in JMIR Cancer (http://cancer.jmir.org), 12.04.2021.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Cancer, is properly cited. The complete bibliographic information, a link to the original publication on http://cancer.jmir.org/, as well as this copyright and license information must be included.

                History
                : 4 August 2020
                : 19 October 2020
                : 29 January 2021
                : 1 February 2021
                Categories
                Original Paper
                Original Paper

                non–small cell lung cancer,cancer,data aggregation,real-world data,administrative claims data,medical records,electronic health record,retrospective study,population health,health services research

                Comments

                Comment on this article