13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MIFallele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d1730374e385">High-expression alleles of the cytokine macrophage migration inhibitory factor (MIF) are associated with severe joint destruction in autoimmune arthritis, but the mechanism for this effect is unknown. High-genotypic <i>MIF</i>-expressing joint fibroblasts produce high levels of MIF under inflammatory stimulation to up-regulate the surface expression of the MIF signaling coreceptor CD44 and promote its alternative splicing into invasive, tumor-associated isoforms, which contribute to the invasive and tissue-destructive character of the rheumatoid joint synovium. These findings support a precision medicine approach to the treatment of rheumatoid arthritis by pharmacologically targeting the MIF pathway in high-genotypic <i>MIF</i>-expressing patients. </p><p class="first" id="d1730374e394">Fibroblast-like synoviocytes mediate joint destruction in rheumatoid arthritis and exhibit sustained proinflammatory and invasive properties. CD44 is a polymorphic transmembrane protein with defined roles in matrix interaction and tumor invasion that is also a signaling coreceptor for macrophage migration inhibitory factor (MIF), which engages cell surface CD74. High-expression <i>MIF</i> alleles ( <i>rs5844572</i>) are associated with rheumatoid joint erosion, but whether MIF signaling through the CD74/CD44 receptor complex promotes upstream autoimmune responses or contributes directly to synovial joint destruction is unknown. We report here the functional regulation of CD44 by an autocrine pathway in synovial fibroblasts that is driven by high-expression <i>MIF</i> alleles to up-regulate an inflammatory and invasive phenotype. MIF increases CD44 expression, promotes its recruitment into a functional signal transduction complex, and stimulates alternative exon splicing, leading to expression of the CD44v3–v6 isoforms associated with oncogenic invasion. CD44 recruitment into the MIF receptor complex, downstream MAPK and RhoA signaling, and invasive phenotype require MIF and CD74 and are reduced by MIF pathway antagonists. These data support a functional role for high- <i>MIF</i> expression alleles and the two-component CD74/CD44 MIF receptor in rheumatoid arthritis and suggest that pharmacologic inhibition of this pathway may offer a specific means to interfere with progressive joint destruction. </p>

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          CD44: from adhesion molecules to signalling regulators.

          Cell-adhesion molecules, once believed to function primarily in tethering cells to extracellular ligands, are now recognized as having broader functions in cellular signalling cascades. The CD44 transmembrane glycoprotein family adds new aspects to these roles by participating in signal-transduction processes--not only by establishing specific transmembrane complexes, but also by organizing signalling cascades through association with the actin cytoskeleton. CD44 and its associated partner proteins monitor changes in the extracellular matrix that influence cell growth, survival and differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MIF Signal Transduction Initiated by Binding to CD74

            Macrophage migration inhibitory factor (MIF) accounts for one of the first cytokine activities to have been described, and it has emerged recently to be an important regulator of innate and adaptive immunity. MIF is an upstream activator of monocytes/macrophages, and it is centrally involved in the pathogenesis of septic shock, arthritis, and other inflammatory conditions. The protein is encoded by a unique but highly conserved gene, and X-ray crystallography studies have shown MIF to define a new protein fold and structural superfamily. Although recent work has begun to illuminate the signal transduction pathways activated by MIF, the nature of its membrane receptor has not been known. Using expression cloning and functional analysis, we report herein that CD74, a Type II transmembrane protein, is a high-affinity binding protein for MIF. MIF binds to the extracellular domain of CD74, and CD74 is required for MIF-induced activation of the extracellular signal–regulated kinase–1/2 MAP kinase cascade, cell proliferation, and PGE2 production. A recombinant, soluble form of CD74 binds MIF with a dissociation constant of ∼9 × 10−9 K d, as defined by surface plasmon resonance (BIAcore analysis), and soluble CD74 inhibits MIF-mediated extracellular signal–regulated kinase activation in defined cell systems. These data provide a molecular basis for MIF's interaction with target cells and identify it as a natural ligand for CD74, which has been implicated previously in signaling and accessory functions for immune cell activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synovial fibroblasts spread rheumatoid arthritis to unaffected joints.

              Active rheumatoid arthritis originates from few joints but subsequently affects the majority of joints. Thus far, the pathways of the progression of the disease are largely unknown. As rheumatoid arthritis synovial fibroblasts (RASFs) which can be found in RA synovium are key players in joint destruction and are able to migrate in vitro, we evaluated the potential of RASFs to spread the disease in vivo. To simulate the primary joint of origin, we implanted healthy human cartilage together with RASFs subcutaneously into severe combined immunodeficient (SCID) mice. At the contralateral flank, we implanted healthy cartilage without cells. RASFs showed an active movement to the naive cartilage via the vasculature independent of the site of application of RASFs into the SCID mouse, leading to a marked destruction of the target cartilage. These findings support the hypothesis that the characteristic clinical phenomenon of destructive arthritis spreading between joints is mediated, at least in part, by the transmigration of activated RASFs.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 06 2016
                December 06 2016
                : 113
                : 49
                : E7917-E7926
                Article
                10.1073/pnas.1612717113
                5150393
                27872288
                f398beaa-af72-45e6-b01d-46d206036c3d
                © 2016

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article