8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: found
          • Article: not found

          The Top 10 fungal pathogens in molecular plant pathology.

          The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological effects of essential oils--a review.

            Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, medicinal and cosmetic applications, especially nowadays in pharmaceutical, sanitary, cosmetic, agricultural and food industries. Because of the mode of extraction, mostly by distillation from aromatic plants, they contain a variety of volatile molecules such as terpenes and terpenoids, phenol-derived aromatic components and aliphatic components. In vitro physicochemical assays characterise most of them as antioxidants. However, recent work shows that in eukaryotic cells, essential oils can act as prooxidants affecting inner cell membranes and organelles such as mitochondria. Depending on type and concentration, they exhibit cytotoxic effects on living cells but are usually non-genotoxic. In some cases, changes in intracellular redox potential and mitochondrial dysfunction induced by essential oils can be associated with their capacity to exert antigenotoxic effects. These findings suggest that, at least in part, the encountered beneficial effects of essential oils are due to prooxidant effects on the cellular level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacillus lipopeptides: versatile weapons for plant disease biocontrol.

              In the context of biocontrol of plant diseases, the three families of Bacillus lipopeptides - surfactins, iturins and fengycins were at first mostly studied for their antagonistic activity for a wide range of potential phytopathogens, including bacteria, fungi and oomycetes. Recent investigations have shed light on the fact that these lipopeptides can also influence the ecological fitness of the producing strain in terms of root colonization (and thereby persistence in the rhizosphere) and also have a key role in the beneficial interaction of Bacillus species with plants by stimulating host defence mechanisms. The different structural traits and physico-chemical properties of these effective surface- and membrane-active amphiphilic biomolecules explain their involvement in most of the mechanisms developed by bacteria for the biocontrol of different plant pathogens.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Critical Reviews in Biotechnology
                Critical Reviews in Biotechnology
                Informa UK Limited
                0738-8551
                1549-7801
                October 03 2021
                May 18 2021
                October 03 2021
                : 41
                : 7
                : 994-1022
                Affiliations
                [1 ]Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
                [2 ]Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
                [3 ]WVU Extension Service, West Virginia University, Morgantown, WV, USA
                Article
                10.1080/07388551.2021.1898325
                34006149
                f33aba1b-9f76-4a9b-89b2-c34f26467908
                © 2021
                History

                Comments

                Comment on this article