19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Growth, Biomass Production and Root Development of Chinese fir in Relation to Initial Planting Density

      , , , , , , ,
      Forests
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chinese fir (Cunninghamia lanceolata (Lamb) Hook) is a commercially valuable timber species that is widely planted in southern China and accounts for 6.1% of the global plantation forests. However, appropriate planting density that ensures high plantation productivity is largely unexplored in this species. The aim of the study was to examine tree growth, biomass production, and its allocation among different organs in relation to initial planting density, and to examine whether planting density has an impact on root development. Mortality, diameter at breast height and tree-height of all trees were determined and measured in wider (2.36 × 2.36 m), intermediate (1.83 × 1.83 m) and narrow (1.44 × 1.44 m) spacing with stand density of 1450 trees ha−1, 2460 trees ha−1 and 3950 trees ha−1, respectively. In each stand, three plots of 20 × 20 m at a distance of 500 m were delineated as the sampling unit. Biomass was determined by destructive sampling of trees in each stand and developing allometric equations. Root morphological traits and their spatial distribution were also determined by carefully excavating the root systems. The results showed an increase in diameter of trees with decreasing stand density while tree height was independent of stand density. Biomass production of individual trees was significantly (p < 0.05) less in high-density stand (32.35 ± 2.98 kg tree−1) compared to low-density stand (44.72 ± 4.96 kg tree−1) and intermediate-density stand (61.35 ± 4.78 kg tree−1) while stand biomass production differed significantly in the order of intermediate (67.63 ± 5.14 t ha−1) > high (57.08 ± 3.13 t ha−1) > low (27.39 ± 3.42 t ha−1) stand density. Both average root length and root volume were significantly (p < 0.05) lower in the high-density stand than stands with low and intermediate density. Analysis of spatial distribution of root systems revealed no overlap between roots of neighboring trees in the competition zone in low-density stand, a subtle overlap in the intermediate density stand and larger overlap in the high-density stand. It can be concluded that better growth and biomass production in intermediate density stand could be explained by better root structural development coupled with minimal competition with understory vegetation and between trees; thus intermediate stand density can be optimal for sustaining long-term productivity and may reduce the management cost in the early phase of the plantation.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Asymmetric competition in plant populations.

          J. Weiner (1990)
          Recently there has been much interest in the hypothesis that competition between individual plants is asymmetric or onesided: larger individuals obtain a disproportionate share of the resources (for their relative size) and suppress the growth of smaller individuals. This has important implications for population structure, for the analysis of competition between plants at the individual, population and community levels, and for our understanding of competition as a selective force in the evolution of plant populations. Copyright © 1990. Published by Elsevier Ltd.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Desirable plant root traits for protecting natural and engineered slopes against landslides

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Forests
                Forests
                MDPI AG
                1999-4907
                March 2019
                March 07 2019
                : 10
                : 3
                : 236
                Article
                10.3390/f10030236
                f2ab152d-3345-4d50-8093-9bb547c77088
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content43

                Cited by15

                Most referenced authors527