14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seroconversion Rate After SARS-CoV-2 Infection and Two Doses of Either ChAdOx1-nCOV COVISHIELD™ or BBV-152 COVAXIN™ Vaccination in Renal Allograft Recipients: An Experience of Two Public and Private Tertiary Care Center

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Vaccination is an effective strategy for preventing SARS-CoV-2 infection and associated mortality. Renal Transplant Recipients (RTRs) are vulnerable to acquiring infection and high mortality due to their immunocompromised state. Varying responses to the different vaccines, depending on types of vaccines and population, have been reported. Vaccines supply is also limited. The current study evaluated the seroconversion rate after SARS-CoV-2 infection and 2 doses of either COVAXIN™ or COVISHIELD™ vaccination in RTR.

          Methods

          The serum anti-SARS-CoV-2 spike protein neutralizing antibody titer was measured in 370 RTRs who acquired SARS-CoV-2 infection (n=172), yet not vaccinated; and those vaccinated with COVAXIN™ (n=78), and COVISHIELD™ (n=120) by chemiluminescence microparticle immunoassay methods from serum.

          Result

          Overall, the seroconversion rate either after vaccination or infection was 85.13% (315/370). The vaccine-associated seroconversion was 80.30% (159/198). SARS-CoV-2 infection-associated seroconversion was 90.69% (156/172), COVISHIELD™ associated seroconversion was 79.2% (95/120), and COVAXIN™ associated seroconversion was 82.05% (64/78). The median IgG titer in the SARS-CoV-2 infection group was 646.50 AU/ml (IQR: 232.52-1717.42), in the COVAXIN™ group was 1449.75 AU/ml (IQR: 400.0-3068.55), and the COVISHIELD™ vaccination group was 1500.51 AU/ml (IQR: 379.47-4938.50). The seroconversion rate and antibody titers were similar irrespective of the place of sampling. Patient’s age-associated seroconversion in <45 years was 88.01% (213/242), 45.1-60 years was 83.18% (94/113), and > 60 years was 58.3% (7/12).

          Conclusions

          Both infection and vaccination induce robust antibody formation in RTRs. The seroconversion rate after SARS-CoV-2 infection was higher but with a lower antibody titer than vaccines. The vaccines, COVAXIN™ and COVISHIELD™, induce more elevated antibody titers than natural infection. The seroconversion rate and antibody titer in Indian RTRs appears to be better than in the western population, irrespective of their vaccination status.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Three Doses of an mRNA Covid-19 Vaccine in Solid-Organ Transplant Recipients

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2

            Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age 1 . Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine 2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating. Individuals over eighty years of age are less likely to mount a good immune response against SARS-CoV-2 (measured by neutralization titres) after the first dose of the BNT162b2 mRNA vaccine, but achieve good neutralization after the second dose.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Factors That Influence the Immune Response to Vaccination

              SUMMARY There is substantial variation between individuals in the immune response to vaccination. In this review, we provide an overview of the plethora of studies that have investigated factors that influence humoral and cellular vaccine responses in humans. These include intrinsic host factors (such as age, sex, genetics, and comorbidities), perinatal factors (such as gestational age, birth weight, feeding method, and maternal factors), and extrinsic factors (such as preexisting immunity, microbiota, infections, and antibiotics). Further, environmental factors (such as geographic location, season, family size, and toxins), behavioral factors (such as smoking, alcohol consumption, exercise, and sleep), and nutritional factors (such as body mass index, micronutrients, and enteropathy) also influence how individuals respond to vaccines. Moreover, vaccine factors (such as vaccine type, product, adjuvant, and dose) and administration factors (schedule, site, route, time of vaccination, and coadministered vaccines and other drugs) are also important. An understanding of all these factors and their impacts in the design of vaccine studies and decisions on vaccination schedules offers ways to improve vaccine immunogenicity and efficacy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                30 June 2022
                2022
                30 June 2022
                : 13
                : 911738
                Affiliations
                [1] 1 Department of Nephrology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow, India
                [2] 2 Medanta The Medicity Hospital , Gurgaon, India
                Author notes

                Edited by: Nitin Saksena, Victoria University, Australia

                Reviewed by: Pragya Dhruv Yadav, ICMR-National Institute of Virology, India; Swayam Prakash, University of California, Irvine, United States

                *Correspondence: Narayan Prasad, narayan.nephro@ 123456gmail.com

                This article was submitted to Vaccines and Molecular Therapeutics, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.911738
                9280041
                35844596
                f2365a8a-a962-4cf2-a4ef-2c74bc822301
                Copyright © 2022 Prasad, Bansal, Yadav, Manhas, Yadav, Gautam, Kushwaha, Singh, Bhadauria, Yachha, Behera and Kaul

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 April 2022
                : 02 June 2022
                Page count
                Figures: 1, Tables: 6, Equations: 0, References: 39, Pages: 9, Words: 4493
                Categories
                Immunology
                Original Research

                Immunology
                vaccination,anti- sars-cov-2 antibody,humoral immunity,covishield™,covaxin™
                Immunology
                vaccination, anti- sars-cov-2 antibody, humoral immunity, covishield™, covaxin™

                Comments

                Comment on this article