18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Characteristics of Noise Exposure During Solitary Trumpet Playing : Immediate Impact on Distortion-Product Otoacoustic Emissions and Long-Term Implications for Hearing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objectives of this investigation were to quantify noise exposures generated during a 1 hr trumpet practice session and to determine whether distortion-product otoacoustic emissions (DPOAEs) are affected by such exposure, to describe the distribution of intensity levels and temporal characteristics of noise produced by trumpet practice, and to determine the effect of earplug use on generated noise levels and DPOAEs.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Sound exposures and hearing thresholds of symphony orchestra musicians.

          To assess the risk of noise-induced hearing loss among musicians in the Chicago Symphony Orchestra, personal dosimeters set to the 3-dB exchange rate were used to obtain 68 noise exposure measurements during rehearsals and concerts. The musicians' Leq values ranged from 79-99 dB A-weighted sound pressure level [dB(A)], with a mean of 89.9 dB(A). Based on 15 h of on-the-job exposure per week, the corresponding 8-h daily Leq (excluding off-the-job practice and playing) ranged from 75-95 dB(A) with a mean of 85.5 dB(A). Mean hearing threshold levels (HTLs) for 59 musicians were better than those for an unscreened nonindustral noise-exposed population (NINEP), and only slightly worse than the 0.50 fractile data for the ISO 7029 (1984) screened presbycusis population. However, 52.5% of individual musicians showed notched audiograms consistent with noise-induced hearing damage. Violinists and violists showed significantly poorer thresholds at 3-6 kHz in the left ear than in the right ear, consistent with the left ear's greater exposure from their instruments. After HTLs were corrected for age and sex, HTLs were found to be significantly better for both ears of musicians playing bass, cello, harp, or piano and for the right ears of violinists and violists than for their left ears or for both ears of other musicians. For 32 musicians for whom both HTLs and Leq were obtained, HTLs at 3-6 kHz were found to be correlated with the Leq measured.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Low-level otoacoustic emissions may predict susceptibility to noise-induced hearing loss.

            In a longitudinal study with 338 volunteers, audiometric thresholds and otoacoustic emissions were measured before and after 6 months of noise exposure on an aircraft carrier. While the average amplitudes of the otoacoustic emissions decreased significantly, the average audiometric thresholds did not change. Furthermore, there were no significant correlations between changes in audiometric thresholds and changes in otoacoustic emissions. Changes in transient-evoked otoacoustic emissions and distortion-product otoacoustic emissions were moderately correlated. Eighteen ears acquired permanent audiometric threshold shifts. Only one-third of those ears showed significant otoacoustic emission shifts that mirrored their permanent threshold shifts. A Bayesian analysis indicated that permanent threshold shift status following a deployment was predicted by baseline low-level or absent otoacoustic emissions. The best predictor was transient-evoked otoacoustic emission amplitude in the 4-kHz half-octave frequency band, with risk increasing more than sixfold from approximately 3% to 20% as the emission amplitude decreased. It is possible that the otoacoustic emissions indicated noise-induced changes in the inner ear, undetected by audiometric tests. Otoacoustic emissions may therefore be a diagnostic predictor for noise-induced-hearing-loss risk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prospective noise induced changes to hearing among construction industry apprentices.

              To characterise the development of noise induced damage to hearing. Hearing and noise exposure were prospectively monitored among a cohort of newly enrolled construction industry apprentices and a comparison group of graduate students, using standard pure tone audiometry and distortion product otoacoustic emissions (DPOAEs). A total of 328 subjects (632 ears) were monitored annually an average of 3.4 times. In parallel to these measures, noise exposure and hearing protection device (HPD) use were extensively monitored during construction work tasks. Recreational/non-occupational exposures also were queried and monitored in subgroups of subjects. Trade specific mean exposure L(eq) levels, with and without accounting for the variable use of hearing protection in each trade, were calculated and used to group subjects by trade specific exposure level. Mixed effects models were used to estimate the change in hearing outcomes over time for each exposure group. Small but significant exposure related changes in DPOAEs over time were observed, especially at 4 kHz with stimulus levels (L1) between 50 and 75 dB, with less clear but similar patterns observed at 3 kHz. After controlling for covariates, the high exposure group had annual changes in 4 kHz emissions of about 0.5 dB per year. Pure tone audiometric thresholds displayed only slight trends towards increased threshold levels with increasing exposure groups. Some unexpected results were observed, including an apparent increase in DPOAEs among controls over time, and improvement in behavioural thresholds among controls at 6 kHz only. Results indicate that construction apprentices in their first three years of work, with average noise exposures under 90 dBA, have measurable losses of hearing function. Despite numerous challenges in using DPOAEs for hearing surveillance in an industrial setting, they appear somewhat more sensitive to these early changes than is evident with standard pure tone audiometry.
                Bookmark

                Author and article information

                Journal
                Ear and Hearing
                Ear and Hearing
                Ovid Technologies (Wolters Kluwer Health)
                0196-0202
                2012
                2012
                : 33
                : 4
                : 543-553
                Article
                10.1097/AUD.0b013e31824c0935
                22531575
                f0eee9c8-bccb-4da3-9b24-8fea537fc51c
                © 2012
                History

                Comments

                Comment on this article