12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      mRNA bivalent booster enhances neutralization against BA.2.75.2 and BQ.1.1

      Preprint

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of the highly divergent SARS-CoV-2 Omicron variant has jeopardized the efficacy of vaccines based on the ancestral spike. The bivalent COVID-19 mRNA booster vaccine within the United States is comprised of the ancestral and the Omicron BA.5 spike. Since its approval and distribution, additional Omicron subvariants have been identified with key mutations within the spike protein receptor binding domain that are predicted to escape vaccine sera. Of particular concern is the R346T mutation which has arisen in multiple subvariants, including BA.2.75.2 and BQ.1.1. Using a live virus neutralization assay, we evaluated serum samples from individuals who had received either one or two monovalent boosters or the bivalent booster to determine neutralizing activity against wild-type (WA1/2020) virus and Omicron subvariants BA.1, BA.5, BA.2.75.2, and BQ.1.1. In the one monovalent booster cohort, relative to WA1/2020, we observed a reduction in neutralization titers of 9-15-fold against BA.1 and BA.5 and 28-39-fold against BA.2.75.2 and BQ.1.1. In the BA.5-containing bivalent booster cohort, the neutralizing activity improved against all the Omicron subvariants. Relative to WA1/2020, we observed a reduction in neutralization titers of 3.7- and 4-fold against BA.1 and BA.5, respectively, and 11.5- and 21-fold against BA.2.75.2 and BQ.1.1, respectively. These data suggest that the bivalent mRNA booster vaccine broadens humoral immunity against the Omicron subvariants.

          Related collections

          Author and article information

          Contributors
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          Journal
          bioRxiv
          November 01 2022
          Article
          10.1101/2022.10.31.514636
          36380757
          f0e86ea6-017a-42ab-acb2-05866caccae7
          © 2022
          History

          Molecular biology,Microscopy & Imaging
          Molecular biology, Microscopy & Imaging

          Comments

          Comment on this article