35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biopolymeric sustainable materials and their emerging applications

      , , , ,
      Journal of Environmental Chemical Engineering
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references304

          • Record: found
          • Abstract: found
          • Article: not found

          Biomedical Applications of Biodegradable Polymers.

          Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodegradation of bioplastics in natural environments.

            The extensive production of conventional plastics and their use in different commercial applications poses a significant threat to both the fossil fuels sources and the environment. Alternatives called bioplastics evolved during development of renewable resources. Utilizing renewable resources like agricultural wastes (instead of petroleum sources) and their biodegradability in different environments enabled these polymers to be more easily acceptable than the conventional plastics. The biodegradability of bioplastics is highly affected by their physical and chemical structure. On the other hand, the environment in which they are located, plays a crucial role in their biodegradation. This review highlights the recent findings attributed to the biodegradation of bioplastics in various environments, environmental conditions, degree of biodegradation, including the identified bioplastic-degrading microorganisms from different microbial communities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Composites from renewable and sustainable resources: Challenges and innovations

              Interest in constructing composite materials from biosourced, recycled materials; waste resources; and their combinations is growing. Biocomposites have attracted the attention of automakers for the design of lightweight parts. Hybrid biocomposites made of petrochemical-based and bioresourced materials have led to technological advances in manufacturing. Greener biocomposites from plant-derived fiber and crop-derived plastics with higher biobased content are continuously being developed. Biodegradable composites have shown potential for major uses in sustainable packaging. Recycled plastic materials originally destined for landfills can be redirected and repurposed for blending in composite applications, thus leading to reduced dependence on virgin petro-based materials. Studies on compatibility of recycled and waste materials with other components in composite structure for improved interface and better mechanical performance pose major scientific challenges. This research holds the promise of advancing a key global sustainability goal.
                Bookmark

                Author and article information

                Journal
                Journal of Environmental Chemical Engineering
                Journal of Environmental Chemical Engineering
                Elsevier BV
                22133437
                August 2022
                August 2022
                : 10
                : 4
                : 108159
                Article
                10.1016/j.jece.2022.108159
                f0ce57c7-9196-49ec-b097-3734939b6209
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article