22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combination therapy to checkmate Glioblastoma: clinical challenges and advances

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Combination therapy is increasingly becoming the cornerstone of current day antitumor therapy. Glioblastoma multiforme is an aggressive brain tumor with a dismal median survival post diagnosis and a high rate of disease recurrence. The poor prognosis can be attributed to unique treatment limitations, which include the infiltrative nature of tumor cells, failure of anti-glioma drugs to cross the blood–brain barrier, tumor heterogeneity and the highly metastatic and angiogenic nature of the tumor making cells resistant to chemotherapy. Combination therapy approach is being developed against glioblastoma with new innovative combination drug regimens being tested in preclinical and clinical trials. In this review, we discuss the pathophysiology of glioblastoma, diagnostic markers, therapeutic targeting strategies, current treatment limitations, novel combination therapies in the context of current treatment options and the ongoing clinical trials for glioblastoma therapy.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.

            Previously undescribed prognostic subclasses of high-grade astrocytoma are identified and discovered to resemble stages in neurogenesis. One tumor class displaying neuronal lineage markers shows longer survival, while two tumor classes enriched for neural stem cell markers display equally short survival. Poor prognosis subclasses exhibit markers either of proliferation or of angiogenesis and mesenchyme. Upon recurrence, tumors frequently shift toward the mesenchymal subclass. Chromosomal locations of genes distinguishing tumor subclass parallel DNA copy number differences between subclasses. Functional relevance of tumor subtype molecular signatures is suggested by the ability of cell line signatures to predict neurosphere growth. A robust two-gene prognostic model utilizing PTEN and DLL3 expression suggests that Akt and Notch signaling are hallmarks of poor prognosis versus better prognosis gliomas, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A restricted cell population propagates glioblastoma growth following chemotherapy

              Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, with a median survival of about one year 1 . This poor prognosis is due to therapeutic resistance and tumor recurrence following surgical removal. Precisely how recurrence occurs is unknown. Using a genetically-engineered mouse model of glioma, we identify a subset of endogenous tumor cells that are the source of new tumor cells after the drug, temozolomide (TMZ), is administered to transiently arrest tumor growth. A Nestin-ΔTK-IRES-GFP (Nes-ΔTK-GFP) transgene that labels quiescent subventricular zone adult neural stem cells also labels a subset of endogenous glioma tumor cells. Upon arrest of tumor cell proliferation with TMZ, pulse-chase experiments demonstrate a tumor re-growth cell hierarchy originating with the Nes-ΔTK-GFP transgene subpopulation. Ablation of the GFP+ cells with chronic ganciclovir administration significantly arrested tumor growth and combined TMZ-ganciclovir treatment impeded tumor development. These data indicate the existence of a relatively quiescent subset of endogenous glioma cells that are responsible for sustaining long-term tumor growth through the production of transient populations of highly proliferative cells.
                Bookmark

                Author and article information

                Contributors
                snandi@cshl.edu
                bhattacharjee@cshl.edu
                Journal
                Clin Transl Med
                Clin Transl Med
                Clinical and Translational Medicine
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2001-1326
                16 October 2018
                16 October 2018
                2018
                : 7
                : 33
                Affiliations
                ISNI 0000 0004 0387 3667, GRID grid.225279.9, Cold Spring Harbor Laboratory, ; Cold Spring Harbor, NY USA
                Author information
                http://orcid.org/0000-0003-0522-3361
                Article
                211
                10.1186/s40169-018-0211-8
                6191404
                30327965
                efbb1109-e671-4a99-b0a0-bb9fdb6f4599
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 6 August 2018
                : 1 October 2018
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Medicine
                combination therapy,glioblastoma multiforme,glioblastoma stem cells,targeted cancer therapy,tumor microenvironment,precision medicine,chemotherapy,tumor heterogeneity,drug resistance,radiotherapy,immunotherapy,clinical trials

                Comments

                Comment on this article