4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eliminating oncogenic RAS: back to the future at the drawing board

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RAS drug development has made enormous strides in the past ten years, with the first direct KRAS inhibitor being approved in 2021. However, despite the clinical success of covalent KRAS-G12C inhibitors, we are immediately confronted with resistances as commonly found with targeted drugs. Previously believed to be undruggable due to its lack of obvious druggable pockets, a couple of new approaches to hit this much feared oncogene have now been carved out. We here concisely review these approaches to directly target four druggable sites of RAS from various angles. Our analysis focuses on the lessons learnt during the development of allele-specific covalent and non-covalent RAS inhibitors, the potential of macromolecular binders to facilitate the discovery and validation of targetable sites on RAS and finally an outlook on a future that may engage more small molecule binders to become drugs. We foresee that the latter could happen mainly in two ways: First, non-covalent small molecule inhibitors may be derived from the development of covalent binders. Second, reversible small molecule binders could be utilized for novel targeting modalities, such as degraders of RAS. Provided that degraders eliminate RAS by recruiting differentially expressed E3-ligases, this approach could enable unprecedented tissue- or developmental stage-specific destruction of RAS with potential advantages for on-target toxicity. We conclude that novel creative ideas continue to be important to exterminate RAS in cancer and other RAS pathway-driven diseases, such as RASopathies.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          RAS Proteins and Their Regulators in Human Disease.

          RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PROTAC targeted protein degraders: the past is prologue

            Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin–proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered ‘undruggable’. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology. Targeted protein degradation with proteolysis-targeting chimeras (PROTACs) has the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. This article summarizes the first two decades of PROTAC discovery and discusses key areas for the future of this therapeutic modality, including establishing the target classes for which it is most suitable and extending its application beyond oncology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sotorasib for Lung Cancers with KRAS p.G12C Mutation

              Sotorasib showed anticancer activity in patients with KRAS p.G12C-mutated advanced solid tumors in a phase 1 study, and particularly promising anticancer activity was observed in a subgroup of patients with non-small-cell lung cancer (NSCLC).
                Bookmark

                Author and article information

                Journal
                Biochem Soc Trans
                Biochem Soc Trans
                BST
                Biochemical Society Transactions
                Portland Press Ltd.
                0300-5127
                1470-8752
                27 February 2023
                23 January 2023
                : 51
                : 1
                : 447-456
                Affiliations
                Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
                Author notes
                Correspondence: Daniel Abankwa ( daniel.abankwa@ 123456uni.lu )
                [*]

                These authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0003-2769-0745
                Article
                BST-51-447
                10.1042/BST20221343
                9987992
                36688434
                efb0502e-b59a-44e5-943f-585674f62ca7
                © 2023 The Author(s)

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 30 November 2022
                : 11 January 2023
                : 12 January 2023
                Categories
                Biochemical Techniques & Resources
                Cancer
                Chemical Biology
                Review Articles

                Biochemistry
                cancer,drug development,ras
                Biochemistry
                cancer, drug development, ras

                Comments

                Comment on this article