1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A reliable and competitive mathematical analysis of Ebola epidemic model

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this article is to discuss the dynamics of the spread of Ebola virus disease (EVD), a kind of fever commonly known as Ebola hemorrhagic fever. It is rare but severe and is considered to be extremely dangerous. Ebola virus transmits to people through domestic and wild animals, called transmitting agents, and then spreads into the human population through close and direct contact among individuals. To study the dynamics and to illustrate the stability pattern of Ebola virus in human population, we have developed an SEIR type model consisting of coupled nonlinear differential equations. These equations provide a good tool to discuss the mode of impact of Ebola virus on the human population through domestic and wild animals. We first formulate the proposed model and obtain the value of threshold parameter $\mathcal{R}_{0}$ for the model. We then determine both the disease-free equilibrium (DFE) and endemic equilibrium (EE) and discuss the stability of the model. We show that both the equilibrium states are locally asymptotically stable. Employing Lyapunov functions theory, global stabilities at both the levels are carried out. We use the Runge–Kutta method of order 4 (RK4) and a non-standard finite difference (NSFD) scheme for the susceptible–exposed–infected–recovered (SEIR) model. In contrast to RK4, which fails for large time step size, it is found that the NSFD scheme preserves the dynamics of the proposed model for any step size used. Numerical results along with the comparison, using different values of step size h, are provided.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations.

            The expected number of secondary cases produced by a typical infected individual during its entire period of infectiousness in a completely susceptible population is mathematically defined as the dominant eigenvalue of a positive linear operator. It is shown that in certain special cases one can easily compute or estimate this eigenvalue. Several examples involving various structuring variables like age, sexual disposition and activity are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fruit bats as reservoirs of Ebola virus.

              The first recorded human outbreak of Ebola virus was in 1976, but the wild reservoir of this virus is still unknown. Here we test for Ebola in more than a thousand small vertebrates that were collected during Ebola outbreaks in humans and great apes between 2001 and 2003 in Gabon and the Republic of the Congo. We find evidence of asymptomatic infection by Ebola virus in three species of fruit bat, indicating that these animals may be acting as a reservoir for this deadly virus.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advances in Difference Equations
                Adv Differ Equ
                Springer Science and Business Media LLC
                1687-1847
                December 2020
                October 01 2020
                December 2020
                : 2020
                : 1
                Article
                10.1186/s13662-020-02994-2
                ef54e726-9fb4-429c-b309-c97e23f64547
                © 2020

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article