236
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal coverage by redirecting the immune response towards conserved epitopes.

          Author Summary

          Numerous reports of vaccine failure are attributed to a mismatch between the genotype of the vaccine and the circulating target strains. This observation is congruent to the view that polyvalent vaccines protect broadly by inducing a multitude of type-specific antibodies. Polyvalent vaccines that can overcome antigenic diversity by refocusing antibody responses towards conserved functional epitopes are highly desirable. Development of an Apical Membrane Antigen-1 (AMA1) malaria vaccine has been impeded by extreme antigenic diversity in the field. We present here a solution to the AMA1 diversity problem. Antibodies against a mixture of only four naturally occurring AMA1 allelic proteins “Quadvax” inhibited invasion of red blood cells by a diverse panel of malaria parasites that represented the global diversity of AMA1 in the field. Competition experiments suggested that in addition to improving the diversity of strain-specific antibodies, the mechanism of broadened inhibition involved an increase in responses against conserved inhibitory epitopes. Monoclonal antibodies against the Quadvax inhibited invasion either by blocking the binding of AMA1 to its receptor RON2 or by blocking a crucial proteolytic processing event. Some mixtures of these antibodies were much more effective than expected and were shown to act synergistically. Together these two classes of functional invasion inhibitory epitopes can be targeted to engineer a more potent AMA1 vaccine.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells.

          We have previously shown that broadly neutralizing antibodies reactive to the conserved stem region of the influenza virus hemagglutinin (HA) were generated in people infected with the 2009 pandemic H1N1 strain. Such antibodies are rarely seen in humans following infection or vaccination with seasonal influenza virus strains. However, the important question remained whether the inactivated 2009 pandemic H1N1 vaccine, like the infection, could also induce these broadly neutralizing antibodies. To address this question, we analyzed B-cell responses in 24 healthy adults immunized with the pandemic vaccine in 2009. In all cases, we found a rapid, predominantly IgG-producing vaccine-specific plasmablast response. Strikingly, the majority (25 of 28) of HA-specific monoclonal antibodies generated from the vaccine-specific plasmablasts neutralized more than one influenza strain and exhibited high levels of somatic hypermutation, suggesting they were derived from recall of B-cell memory. Indeed, memory B cells that recognized the 2009 pandemic H1N1 HA were detectable before vaccination not only in this cohort but also in samples obtained before the emergence of the pandemic strain. Three antibodies demonstrated extremely broad cross-reactivity and were found to bind the HA stem. Furthermore, one stem-reactive antibody recognized not only H1 and H5, but also H3 influenza viruses. This exceptional cross-reactivity indicates that antibodies capable of neutralizing most influenza subtypes might indeed be elicited by vaccination. The challenge now is to improve upon this result and design influenza vaccines that can elicit these broadly cross-reactive antibodies at sufficiently high levels to provide heterosubtypic protection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A field trial to assess a blood-stage malaria vaccine.

            Blood-stage malaria vaccines are intended to prevent clinical disease. The malaria vaccine FMP2.1/AS02(A), a recombinant protein based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, has previously been shown to have immunogenicity and acceptable safety in Malian adults and children. In a double-blind, randomized trial, we immunized 400 Malian children with either the malaria vaccine or a control (rabies) vaccine and followed them for 6 months. The primary end point was clinical malaria, defined as fever and at least 2500 parasites per cubic millimeter of blood. A secondary end point was clinical malaria caused by parasites with the AMA1 DNA sequence found in the vaccine strain. The cumulative incidence of the primary end point was 48.4% in the malaria-vaccine group and 54.4% in the control group; efficacy against the primary end point was 17.4% (hazard ratio for the primary end point, 0.83; 95% confidence interval [CI], 0.63 to 1.09; P=0.18). Efficacy against the first and subsequent episodes of clinical malaria, as defined on the basis of various parasite-density thresholds, was approximately 20%. Efficacy against clinical malaria caused by parasites with AMA1 corresponding to that of the vaccine strain was 64.3% (hazard ratio, 0.36; 95% CI, 0.08 to 0.86; P=0.03). Local reactions and fever after vaccination were more frequent with the malaria vaccine. On the basis of the primary end point, the malaria vaccine did not provide significant protection against clinical malaria, but on the basis of secondary results, it may have strain-specific efficacy. If this finding is confirmed, AMA1 might be useful in a multicomponent malaria vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT00460525.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses.

              After the emergence of pandemic influenza viruses in 1957, 1968, and 2009, existing seasonal viruses were observed to be replaced in the human population by the novel pandemic strains. We have previously hypothesized that the replacement of seasonal strains was mediated, in part, by a population-scale boost in antibodies specific for conserved regions of the hemagglutinin stalk and the viral neuraminidase. Numerous recent studies have shown the role of stalk-specific antibodies in neutralization of influenza viruses; the finding that stalk antibodies can effectively neutralize virus alters the existing dogma that influenza virus neutralization is mediated solely by antibodies that react with the globular head of the viral hemagglutinin. The present study explores the possibility that stalk-specific antibodies were boosted by infection with the 2009 H1N1 pandemic virus and that those antibodies could have contributed to the disappearance of existing seasonal H1N1 influenza virus strains. To study stalk-specific antibodies, we have developed chimeric hemagglutinin constructs that enable the measurement of antibodies that bind the hemagglutinin protein and neutralize virus but do not have hemagglutination inhibition activity. Using these chimeric hemagglutinin reagents, we show that infection with the 2009 pandemic H1N1 virus elicited a boost in titer of virus-neutralizing antibodies directed against the hemagglutinin stalk. In addition, we describe assays that can be used to measure influenza virus-neutralizing antibodies that are not detected in the traditional hemagglutination inhibition assay.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2013
                December 2013
                26 December 2013
                : 9
                : 12
                : e1003840
                Affiliations
                [1 ]Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
                [2 ]Burnet Institute, Melbourne, Victoria, Australia
                [3 ]Department of Biochemistry, La Trobe University, Victoria, Australia
                [4 ]Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, Maryland, United States of America
                MRC National Institute for Medical Research, United Kingdom
                Author notes

                SD has been named on an AMA1 related US patent. This does not alter our adherence to all PLOS policies on sharing data and materials.

                Conceived and designed the experiments: SD MF JDH RFA JGB AHB. Performed the experiments: SD LSD DRD XG DA JGB JKM YIR. Analyzed the data: SD KM CAL JGB. Contributed reagents/materials/analysis tools: MS. Wrote the paper: SD JDH AHB.

                Article
                PPATHOGENS-D-13-00544
                10.1371/journal.ppat.1003840
                3873463
                24385910
                ecef174a-c5b7-40c7-8722-5ec729610567
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 26 February 2013
                : 4 November 2013
                Page count
                Pages: 17
                Funding
                The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Funding for the WRAIR and La Trobe University was provided by PATH Malaria Vaccine Initiative and US Agency for International Development Malaria Vaccine Program. Burnet Institute was funded by Institute National Health and Medical Research Council of Australia; Australian Research Council; and a Victorian State Government Operational Infrastructure Support grant. The NIH studies were supported in part by the Intramural Program of NIAID and the PATH Malaria Vaccine Initiative.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Malaria vaccine development collection topic 3) Vaccines in development.

                See https://www.scienceopen.com/collection/malariavaccine

                2018-10-10 00:44 UTC
                +1

                Comment on this article