9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BRD4 Inhibition Enhances Azacitidine Efficacy in Acute Myeloid Leukemia and Myelodysplastic Syndromes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell-based disorders characterized by ineffective hematopoiesis, increased genomic instability and a tendency to progress toward acute myeloid leukemia (AML). MDS and AML cells present genetic and epigenetic abnormalities and, due to the heterogeneity of these molecular alterations, the current treatment options remain unsatisfactory. Hypomethylating agents (HMA), especially azacitidine, are the mainstay of treatment for high-risk MDS patients and HMA are used in treating elderly AML. The aim of this study was to investigate the potential role of the epigenetic reader bromodomain-containing protein-4 (BRD4) in MDS and AML patients. We identified the upregulation of the short variant BRD4 in MDS and AML patients, which was associated with a worse outcome of MDS. Furthermore, the inhibition of BRD4 in vitro with JQ1 or shRNA induced leukemia cell apoptosis, especially when combined to azacitidine, and triggered the activation of the DNA damage response pathway. JQ1 and AZD6738 (a specific ATR inhibitor) also synergized to induce apoptosis in leukemia cells. Our results indicate that the BRD4-dependent transcriptional program is a defective pathway in MDS and AML pathogenesis and its inhibition induces apoptosis of leukemia cells, which is enhanced in combination with HMA or an ATR inhibitor.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Revised international prognostic scoring system for myelodysplastic syndromes.

          The International Prognostic Scoring System (IPSS) is an important standard for assessing prognosis of primary untreated adult patients with myelodysplastic syndromes (MDS). To refine the IPSS, MDS patient databases from international institutions were coalesced to assemble a much larger combined database (Revised-IPSS [IPSS-R], n = 7012, IPSS, n = 816) for analysis. Multiple statistically weighted clinical features were used to generate a prognostic categorization model. Bone marrow cytogenetics, marrow blast percentage, and cytopenias remained the basis of the new system. Novel components of the current analysis included: 5 rather than 3 cytogenetic prognostic subgroups with specific and new classifications of a number of less common cytogenetic subsets, splitting the low marrow blast percentage value, and depth of cytopenias. This model defined 5 rather than the 4 major prognostic categories that are present in the IPSS. Patient age, performance status, serum ferritin, and lactate dehydrogenase were significant additive features for survival but not for acute myeloid leukemia transformation. This system comprehensively integrated the numerous known clinical features into a method analyzing MDS patient prognosis more precisely than the initial IPSS. As such, this IPSS-R should prove beneficial for predicting the clinical outcomes of untreated MDS patients and aiding design and analysis of clinical trials in this disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study.

            Drug treatments for patients with high-risk myelodysplastic syndromes provide no survival advantage. In this trial, we aimed to assess the effect of azacitidine on overall survival compared with the three commonest conventional care regimens. In a phase III, international, multicentre, controlled, parallel-group, open-label trial, patients with higher-risk myelodysplastic syndromes were randomly assigned one-to-one to receive azacitidine (75 mg/m(2) per day for 7 days every 28 days) or conventional care (best supportive care, low-dose cytarabine, or intensive chemotherapy as selected by investigators before randomisation). Patients were stratified by French-American-British and international prognostic scoring system classifications; randomisation was done with a block size of four. The primary endpoint was overall survival. Efficacy analyses were by intention to treat for all patients assigned to receive treatment. This study is registered with ClinicalTrials.gov, number NCT00071799. Between Feb 13, 2004, and Aug 7, 2006, 358 patients were randomly assigned to receive azacitidine (n=179) or conventional care regimens (n=179). Four patients in the azacitidine and 14 in the conventional care groups received no study drugs but were included in the intention-to-treat efficacy analysis. After a median follow-up of 21.1 months (IQR 15.1-26.9), median overall survival was 24.5 months (9.9-not reached) for the azacitidine group versus 15.0 months (5.6-24.1) for the conventional care group (hazard ratio 0.58; 95% CI 0.43-0.77; stratified log-rank p=0.0001). At last follow-up, 82 patients in the azacitidine group had died compared with 113 in the conventional care group. At 2 years, on the basis of Kaplan-Meier estimates, 50.8% (95% CI 42.1-58.8) of patients in the azacitidine group were alive compared with 26.2% (18.7-34.3) in the conventional care group (p<0.0001). Peripheral cytopenias were the most common grade 3-4 adverse events for all treatments. Treatment with azacitidine increases overall survival in patients with higher-risk myelodysplastic syndromes relative to conventional care.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine.

              The cytosine analogues 5-azacytosine (azacytidine) and 2'-deoxy-5-azacytidine (decitabine) are the currently most advanced drugs for epigenetic cancer therapies. These compounds function as DNA methyltransferase inhibitors and have shown substantial potency in reactivating epigenetically silenced tumor suppressor genes in vitro. However, it has been difficult to define the mode of action of these drugs in patients and it appears that clinical responses are influenced both by epigenetic alterations and by apoptosis induction. To maximize the clinical efficacy of azacytidine and decitabine it will be important to understand the molecular changes induced by these drugs. In this review, we examine the pharmacological properties of azanucleosides and their interactions with various cellular pathways. Because azacytidine and decitabine are prodrugs, an understanding of the cellular mechanisms mediating transmembrane transport and metabolic activation will be critically important for optimizing patient responses. We also discuss the mechanism of DNA methyltransferase inhibition and emphasize the need for the identification of predictive biomarkers for the further advancement of epigenetic therapies. (c) 2008 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                29 January 2019
                2019
                : 9
                : 16
                Affiliations
                [1] 1Hematology and Transfusion Medicine Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp , São Paulo, Brazil
                [2] 2Department of Pharmaceutical Sciences, Federal University of São Paulo , São Paulo, Brazil
                [3] 3Universidade São Francisco (USF) , Bragança Paulista, São Paulo, Brazil
                Author notes

                Edited by: Cyrus Khandanpour, University Hospital Münster, Germany

                Reviewed by: Kavita Raj, Guy's and St Thomas' NHS Foundation Trust, United Kingdom; Giuseppe Alberto Palumbo, Università degli Studi di Catania, Italy

                *Correspondence: Sara Teresinha Olalla Saad sara@ 123456unicamp.br

                This article was submitted to Hematologic Malignancies, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2019.00016
                6361844
                30761268
                ec440e08-57a1-41da-bc7b-488ab0d2689f
                Copyright © 2019 Pericole, Lazarini, de Paiva, Duarte, Vieira Ferro, Niemann, Roversi and Olalla Saad.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 October 2018
                : 04 January 2019
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 39, Pages: 11, Words: 7041
                Funding
                Funded by: Fundação de Amparo à Pesquisa do Estado de São Paulo 10.13039/501100001807
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                myelodysplastic syndromes,acute myeloid leukemia,bet member of bromodomain-containing proteins,azacitidine,azd6738

                Comments

                Comment on this article