14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The rise and fall of Neotropical biodiversity

      1 , 2 , 3
      Botanical Journal of the Linnean Society
      Oxford University Press (OUP)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exceptional levels of biodiversity found today in the American tropics are the outcome of tens of millions of years of evolution, shaped by the tumultuous geological history of the region, its heterogeneous habitats, climate change, ecological interactions and, in recent millennia, human influence. Although our understanding of diversity patterns and their underlying processes grows steadily in breadth and depth, Neotropical biodiversity is rapidly breaking down. Here, I contrast the long-term evolution of Neotropical biodiversity with its recent and rapid deterioration due to anthropogenic factors. I consider the impacts of the early arrival of humans to the region and the modern intensification of land-use change (primarily driven by agriculture) and other drivers of biodiversity loss, such as direct exploitation, invasive species and climate change. Together, these threats have led to 33% of all Neotropical species for which sufficient data are available being currently threatened with extinction. I outline emerging opportunities for conservation and restoration under the post-2020 Global Biodiversity Framework and call for urgent action from the biodiversity community, for the benefit of people and nature.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: found

          Planetary boundaries: Guiding human development on a changing planet

          The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-resolution global maps of 21st-century forest cover change.

            Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pervasive human-driven decline of life on Earth points to the need for transformative change

              The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature’s benefits are unequally distributed. The fabric of life on which we all depend—nature and its contributions to people—is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature’s deterioration.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Botanical Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4074
                1095-8339
                May 01 2022
                April 13 2022
                October 21 2021
                May 01 2022
                April 13 2022
                October 21 2021
                : 199
                : 1
                : 8-24
                Affiliations
                [1 ]Royal Botanic Gardens, Kew, Richmond, Surrey, UK
                [2 ]Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Göteborg, Sweden
                [3 ]Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
                Article
                10.1093/botlinnean/boab061
                ec13eee8-7ba4-45cd-8bb0-6a31023c17ae
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article