28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review of toxicity studies of carbon nanotubes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective:

          We reviewed studies on pulmonary, reproductive, and developmental toxicity caused by carbon nanotubes (CNTs). In paricular, we analyzed how CNT exposure affects the several processes of pulmonary toxicity, including inflammation, injury, fibrosis, and pulmonary tumors.

          Methods:

          In pulmonary toxicity, there are various processes, including inflammation, injury, fibrosis, respiratory tumor in the lungs, and biopersistence of CNTs and genotoxicity as tumor-related factors, to develop the respiratory tumor. We evaluated the evidence for the carcinogenicity of CNTs in each process. In the fields of reproductive and developmental toxicity, studies of CNTs have been conducted mainly with mice. We summarized the findings of reproductive and developmental toxicity studies of CNTs.

          Results:

          In animal studies, exposure to CNTs induced sustained inflammation, fibrosis, lung cancer following long-term inhalation, and gene damage in the lung. CNTs also showed high biopersistence in animal studies. Fetal malformations after intravenous and intraperitoneal injections and intratracheal instillation, fetal loss after intravenous injection, behavioral changes in offsprings after intraperitoneal injection, and a delay in the delivery of the first litter after intratracheal instillation were reported in mice-administered multi-walled carbon nanotubes (MWCNTs). Single-walled carbon nanotubes (SWCNTs) appeared to be embryolethal and teratogenic in mice when given by intravenous injection; moreover, the tubes induced death and growth retardation in chicken embryos.

          Conclusion:

          CNTs are considered to have carcinogenicity and can cause lung tumors. However, the carcinogenicity of CNTs may attenuate if the fiber length is shorter. The available data provide initial information on the potential reproductive and developmental toxicity of CNTs.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats.

          The aim of this study was to evaluate the acute lung toxicity of intratracheally instilled single-wall carbon nanotubes (SWCNT) in rats. The lungs of rats were instilled either with 1 or 5 mg/kg of the following control or particle types: (1) SWCNT, (2) quartz particles (positive control), (3) carbonyl iron particles (negative control), (4) phosphate-buffered saline (PBS) + 1% Tween 80, or (5) graphite particles (lung tissue studies only). Following exposures, the lungs of PBS and particle-exposed rats were assessed using bronchoalveolar lavage (BAL) fluid biomarkers and cell proliferation methods, and by histopathological evaluation of lung tissue at 24 h, 1 week, 1 month, and 3 months postinstillation. Exposures to high-dose (5 mg/kg) SWCNT produced mortality in ~15% of the SWCNT-instilled rats within 24 h postinstillation. This mortality resulted from mechanical blockage of the upper airways by the instillate and was not due to inherent pulmonary toxicity of the instilled SWCNT particulate. Exposures to quartz particles produced significant increases versus controls in pulmonary inflammation, cytotoxicity, and lung cell parenchymal cell proliferation indices. Exposures to SWCNT produced transient inflammatory and cell injury effects. Results from the lung histopathology component of the study indicated that pulmonary exposures to quartz particles (5 mg/kg) produced dose-dependent inflammatory responses, concomitant with foamy alveolar macrophage accumulation and lung tissue thickening at the sites of normal particle deposition. Pulmonary exposures to carbonyl iron or graphite particles produced no significant adverse effects. Pulmonary exposures to SWCNT in rats produced a non-dose-dependent series of multifocal granulomas, which were evidence of a foreign tissue body reaction and were nonuniform in distribution and not progressive beyond 1 month postexposure (pe). The observation of SWCNT-induced multifocal granulomas is inconsistent with the following: (1) lack of lung toxicity by assessing lavage parameters, (2) lack of lung toxicity by measuring cell proliferation parameters, (3) an apparent lack of a dose response relationship, (4) nonuniform distribution of lesions, (5) the paradigm of dust-related lung toxicity effects, (6) possible regression of effects over time. In addition, the results of two recent exposure assessment studies indicate very low aerosol SWCNT exposures at the workplace. Thus, the physiological relevance of these findings should ultimately be determined by conducting an inhalation toxicity study.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice.

            Single-walled carbon nanotubes (SWCNT) are new materials of emerging technological importance. As SWCNT are introduced into the life cycle of commercial products, their effects on human health and environment should be addressed. We demonstrated that pharyngeal aspiration of SWCNT elicited unusual pulmonary effects in C57BL/6 mice that combined a robust but acute inflammation with early onset yet progressive fibrosis and granulomas. A dose-dependent increase in the protein, LDH, and gamma-glutamyl transferase activities in bronchoalveolar lavage were found along with accumulation of 4-hydroxynonenal (oxidative biomarker) and depletion of glutathione in lungs. An early neutrophils accumulation (day 1), followed by lymphocyte (day 3) and macrophage (day 7) influx, was accompanied by early elevation of proinflammatory cytokines (TNF-alpha, IL-1beta; day 1) followed by fibrogenic transforming growth factor (TGF)-beta1 (peaked on day 7). A rapid progressive fibrosis found in mice exhibited two distinct morphologies: 1) SWCNT-induced granulomas mainly associated with hypertrophied epithelial cells surrounding SWCNT aggregates and 2) diffuse interstitial fibrosis and alveolar wall thickening likely associated with dispersed SWCNT. In vitro exposure of murine RAW 264.7 macrophages to SWCNT triggered TGF-beta1 production similarly to zymosan but generated less TNF-alpha and IL-1beta. SWCNT did not cause superoxide or NO.production, active SWCNT engulfment, or apoptosis in RAW 264.7 macrophages. Functional respiratory deficiencies and decreased bacterial clearance (Listeria monocytogenes) were found in mice treated with SWCNT. Equal doses of ultrafine carbon black particles or fine crystalline silica (SiO2) did not induce granulomas or alveolar wall thickening and caused a significantly weaker pulmonary inflammation and damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic inflammation and cancer.

              A substantial body of evidence supports the conclusion that chronic inflammation can predispose an individual to cancer, as demonstrated by the association between chronic inflammatory bowel diseases and the increased risk of colon carcinoma. Chronic inflammation is caused by a variety of factors, including bacterial, viral, and parasitic infections, chemical irritants, and nondigestible particles. The longer the inflammation persists, the higher the risk of associated carcinogenesis. This review describes some of the underlying causes of the association between chronic inflammation and cancer. Inflammatory mediators contribute to neoplasia by inducing proneoplastic mutations, adaptive responses, resistance to apoptosis, and environmental changes such as stimulation of angiogenesis. All these changes confer a survival advantage to a susceptible cell. In this article, we discuss the contribution of reactive oxygen and nitrogen intermediates, prostaglandins, and inflammatory cytokines to carcinogenesis. A thorough understanding of the molecular basis of inflammation-associated neoplasia and progression can lead to novel approaches to the prevention and treatment of cancer.
                Bookmark

                Author and article information

                Journal
                J Occup Health
                J Occup Health
                Journal of Occupational Health
                Japan Society for Occupational Health
                1341-9145
                1348-9585
                8 August 2017
                20 September 2017
                : 59
                : 5
                : 394-407
                Affiliations
                [1 ] Division of Environmental Chemistry, National Institute of Health Sciences
                [2 ] Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health
                Author notes
                Correspondence to: Y. Morimoto, Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Yahatanishiku Iseigaoka, Kitakyushu, Fukuoka, 807-8555, Japan (e-mail: yasuom@ 123456med.uoeh-u.ac.jp )
                Article
                17-0089-RA
                10.1539/joh.17-0089-RA
                5635148
                28794394
                eb43ce3b-ac3f-464d-a506-ad3464652fdb

                Journal of Occupational Health is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view the details of this license, please visit ( https://creativecommons.org/licenses/by-nc-sa/4.0/).

                History
                : 31 March 2017
                : 13 July 2017
                Categories
                Review

                carbon nanotube,inhalation,intratracheal instillation,pulmonary toxicity,reproductive toxicity

                Comments

                Comment on this article