There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
This paper discusses the use of Artificial Intelligence Chatbot in scientific writing. ChatGPT is a type of chatbot, developed by OpenAI, that uses the Generative Pre-trained Transformer (GPT) language model to understand and respond to natural language inputs. AI chatbot and ChatGPT in particular appear to be useful tools in scientific writing, assisting researchers and scientists in organizing material, generating an initial draft and/or in proofreading. There is no publication in the field of critical care medicine prepared using this approach; however, this will be a possibility in the next future. ChatGPT work should not be used as a replacement for human judgment and the output should always be reviewed by experts before being used in any critical decision-making or application. Moreover, several ethical issues arise about using these tools, such as the risk of plagiarism and inaccuracies, as well as a potential imbalance in its accessibility between high- and low-income countries, if the software becomes paying. For this reason, a consensus on how to regulate the use of chatbots in scientific writing will soon be required.
Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.