1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Seasonal Dynamics and the Influence of Human Activities on Campus Outdoor Microbial Communities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large-scale campus resembles a small “semi-open community,” harboring disturbances from the exchanges of people and vehicles, wherein stressors such as temperature and population density differ among the ground surfaces of functional partitions. Therefore, it represents a special ecological niche for the study on microbial ecology in the process of urbanization. In this study, we investigated outdoor microbial communities in four campuses in Wuhan, China. We obtained 284 samples from 55 sampling sites over six seasons, as well as their matching climatic and environmental records. The structure of campus outdoor microbial communities which influenced by multiple climatic factors featured seasonality. The dispersal influence of human activities on microbial communities also contributed to this seasonal pattern non-negligibly. However, despite the microbial composition alteration in response to multiple stressors, the overall predicted function of campus outdoor microbial communities remained stable across campuses. The spatial–temporal dynamic patterns on campus outdoor microbial communities and its predicted functions have bridged the gap between microbial and macro-level ecosystems, and provided hints toward a better understanding of the effects of climatic factors and human activities on campus micro-environments.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Structure and function of the global topsoil microbiome

          Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1-4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial-fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            EMPeror: a tool for visualizing high-throughput microbial community data

            Background As microbial ecologists take advantage of high-throughput sequencing technologies to describe microbial communities across ever-increasing numbers of samples, new analysis tools are required to relate the distribution of microbes among larger numbers of communities, and to use increasingly rich and standards-compliant metadata to understand the biological factors driving these relationships. In particular, the Earth Microbiome Project drives these needs by profiling the genomic content of tens of thousands of samples across multiple environment types. Findings Features of EMPeror include: ability to visualize gradients and categorical data, visualize different principal coordinates axes, present the data in the form of parallel coordinates, show taxa as well as environmental samples, dynamically adjust the size and transparency of the spheres representing the communities on a per-category basis, dynamically scale the axes according to the fraction of variance each explains, show, hide or recolor points according to arbitrary metadata including that compliant with the MIxS family of standards developed by the Genomic Standards Consortium, display jackknifed-resampled data to assess statistical confidence in clustering, perform coordinate comparisons (useful for procrustes analysis plots), and greatly reduce loading times and overall memory footprint compared with existing approaches. Additionally, ease of sharing, given EMPeror’s small output file size, enables agile collaboration by allowing users to embed these visualizations via emails or web pages without the need for extra plugins. Conclusions Here we present EMPeror, an open source and web browser enabled tool with a versatile command line interface that allows researchers to perform rapid exploratory investigations of 3D visualizations of microbial community data, such as the widely used principal coordinates plots. EMPeror includes a rich set of controllers to modify features as a function of the metadata. By being specifically tailored to the requirements of microbial ecologists, EMPeror thus increases the speed with which insight can be gained from large microbiome datasets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biodiversity as spatial insurance in heterogeneous landscapes.

              The potential consequences of biodiversity loss for ecosystem functioning and services at local scales have received considerable attention during the last decade, but little is known about how biodiversity affects ecosystem processes and stability at larger spatial scales. We propose that biodiversity provides spatial insurance for ecosystem functioning by virtue of spatial exchanges among local systems in heterogeneous landscapes. We explore this hypothesis by using a simple theoretical metacommunity model with explicit local consumer-resource dynamics and dispersal among systems. Our model shows that variation in dispersal rate affects the temporal mean and variability of ecosystem productivity strongly and nonmonotonically through two mechanisms: spatial averaging by the intermediate-type species that tends to dominate the landscape at high dispersal rates, and functional compensations between species that are made possible by the maintenance of species diversity. The spatial insurance effects of species diversity are highest at the intermediate dispersal rates that maximize local diversity. These results have profound implications for conservation and management. Knowledge of spatial processes across ecosystems is critical to predict the effects of landscape changes on both biodiversity and ecosystem functioning and services.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                10 July 2019
                2019
                : 10
                : 1579
                Affiliations
                Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, China
                Author notes

                Edited by: George Tsiamis, University of Patras, Greece

                Reviewed by: Fengfeng Zhou, Jilin University, China; Spyridon Ntougias, Democritus University of Thrace, Greece

                *Correspondence: Kang Ning, ningkang@ 123456hust.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01579
                6636667
                31354673
                e7d67988-b2de-4812-82ef-850c3906af36
                Copyright © 2019 Chen, He, Cheng, Han, Zha, Yang, Yao, Zhou, Zhong and Ning.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 December 2018
                : 25 June 2019
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 69, Pages: 15, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Funded by: Ministry of Science and Technology 10.13039/100007225
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                campus outdoor microbial communities,seasonal dynamics,human activities,temperature,functional stability

                Comments

                Comment on this article