85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using a microarray-based approach, Michael Levin and colleagues develop a disease risk score to distinguish active from latent tuberculosis, as well as tuberculosis from other diseases, using whole blood samples.

          Please see later in the article for the Editors' Summary

          Abstract

          Background

          A major impediment to tuberculosis control in Africa is the difficulty in diagnosing active tuberculosis (TB), particularly in the context of HIV infection. We hypothesized that a unique host blood RNA transcriptional signature would distinguish TB from other diseases (OD) in HIV-infected and -uninfected patients, and that this could be the basis of a simple diagnostic test.

          Methods and Findings

          Adult case-control cohorts were established in South Africa and Malawi of HIV-infected or -uninfected individuals consisting of 584 patients with either TB (confirmed by culture of Mycobacterium tuberculosis [M.TB] from sputum or tissue sample in a patient under investigation for TB), OD (i.e., TB was considered in the differential diagnosis but then excluded), or healthy individuals with latent TB infection (LTBI). Individuals were randomized into training (80%) and test (20%) cohorts. Blood transcriptional profiles were assessed and minimal sets of significantly differentially expressed transcripts distinguishing TB from LTBI and OD were identified in the training cohort. A 27 transcript signature distinguished TB from LTBI and a 44 transcript signature distinguished TB from OD. To evaluate our signatures, we used a novel computational method to calculate a disease risk score (DRS) for each patient. The classification based on this score was first evaluated in the test cohort, and then validated in an independent publically available dataset (GSE19491).

          In our test cohort, the DRS classified TB from LTBI (sensitivity 95%, 95% CI [87–100]; specificity 90%, 95% CI [80–97]) and TB from OD (sensitivity 93%, 95% CI [83–100]; specificity 88%, 95% CI [74–97]). In the independent validation cohort, TB patients were distinguished both from LTBI individuals (sensitivity 95%, 95% CI [85–100]; specificity 94%, 95% CI [84–100]) and OD patients (sensitivity 100%, 95% CI [100–100]; specificity 96%, 95% CI [93–100]).

          Limitations of our study include the use of only culture confirmed TB patients, and the potential that TB may have been misdiagnosed in a small proportion of OD patients despite the extensive clinical investigation used to assign each patient to their diagnostic group.

          Conclusions

          In our study, blood transcriptional signatures distinguished TB from other conditions prevalent in HIV-infected and -uninfected African adults. Our DRS, based on these signatures, could be developed as a test for TB suitable for use in HIV endemic countries. Further evaluation of the performance of the signatures and DRS in prospective populations of patients with symptoms consistent with TB will be needed to define their clinical value under operational conditions.

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          Tuberculosis (TB), caused by Mycobacterium tuberculosis, is curable and preventable, but according to the World Health Organization (WHO), in 2011, 8.7 million people had symptoms of TB (usually a productive cough and fever) and 1.4 million people—95% from low- and middle-income countries—died from this infection. Worldwide, TB is also the leading cause of death in people with HIV. For over a century, diagnosis of TB has relied on clinical and radiological features, sputum microscopy, and tuberculin skin testing but all of these tests have major disadvantages, especially in people who are also infected with HIV (HIV/TB co-infection) in whom results are often atypical or falsely negative. Furthermore, current tests cannot distinguish between inactive (latent) and active TB infection. Therefore, there is a need to identify biomarkers that can differentiate TB from other diseases common to African populations, where the burden of the HIV/TB pandemic is greatest.

          Why Was This Study Done?

          Previous studies have suggested that TB may be associated with specific transcriptional profiles (identified by microarray analysis) in the blood of the infected patient (host), which might make it possible to differentiate TB from other conditions. However, these studies have not included people co-infected with HIV and have included in the differential diagnosis diseases that are unrepresentative of the range of conditions common to African patients. In this study of patients from Malawi and South Africa, the researchers investigated whether blood RNA expression could distinguish TB from other conditions prevalent in African populations and form the basis of a diagnostic test for TB (through a process using transcription signatures).

          What Did the Researchers Do and Find?

          The researchers recruited patients with suspected TB attending one clinic in Cape Town, South Africa between 2007 and 2010 and in one hospital in Karonga district, Malawi between 2007 and 2009 (the training and test cohorts). Each patient underwent a series of tests for TB (and had a blood test for HIV) and was diagnosed as having TB if there was microbiological evidence confirming the presence of Mycobacterium tuberculosis. At recruitment, each patient also had blood taken for microarray analysis and following this assessment, the researchers selected minimal transcript sets that distinguished TB from latent TB infection and TB from other diseases, even in HIV-infected individuals. In order to help form the basis of a simple, low cost, diagnostic test, the researchers then developed a statistical method for the translation of multiple transcript RNA signatures into a disease risk score, which the researchers then checked using a separate cohort of South African patients (the independent validation cohort).

          Using these methods, after screening 437 patients in Malawi and 314 in South Africa, the researchers recruited 273 patients to the Malawi cohort and 311 adults to the South African cohort (the training and test cohorts). Following technical failures, 536 microarray samples were available for analysis. The researchers identified a set of 27 transcripts that could distinguish between TB and latent TB and a set of 44 transcripts that could distinguish TB from other diseases. These multi-transcript signatures were then used to calculate a single value disease risk score for every patient. In the test cohorts, the disease risk score had a high sensitivity (95%) and specificity (90%) for distinguishing TB from latent TB infection (sensitivity is a measure of true positives, correctly identified as such and specificity is a measure of true negatives, correctly identified as such) and for distinguishing TB from other diseases (sensitivity 93% and specificity 88%). In the independent validation cohort, the researchers found that patients with TB could be distinguished from patients with latent TB infection (sensitivity 95% and specificity 94%) and also from patients with other diseases (sensitivity 100% and specificity 96%).

          What Do These Findings Mean?

          These findings suggest that a distinctive set of RNA transcriptional signatures forming a disease risk score might provide the basis of a diagnostic test that can distinguish active TB from latent TB infection (27 signatures) and also from other diseases (44 signatures), such as pneumonia, that are prevalent in African populations. There is a concern that using transcriptional signatures as a clinical diagnostic tool in resource poor settings might not be feasible because they are complex and costly. The relatively small number of transcripts in the signatures described here may increase the potential for using this approach (transcriptional profiling) as a clinical diagnostic tool using a single blood test. In order to make most use of these findings, there is an urgent need for the academic research community and for industry to develop innovative methods to translate multi-transcript signatures into simple, cheap tests for TB suitable for use in African health facilities.

          Additional Information

          Please access these websites via the online version of this summary at http://dx.doi.org/ 10.1371/journal.pmed.1001538.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Common patterns and disease-related signatures in tuberculosis and sarcoidosis.

          In light of the marked global health impact of tuberculosis (TB), strong focus has been on identifying biosignatures. Gene expression profiles in blood cells identified so far are indicative of a persistent activation of the immune system and chronic inflammatory pathology in active TB. Definition of a biosignature with unique specificity for TB demands that identified profiles can differentiate diseases with similar pathology, like sarcoidosis (SARC). Here, we present a detailed comparison between pulmonary TB and SARC, including whole-blood gene expression profiling, microRNA expression, and multiplex serum analytes. Our analysis reveals that previously disclosed gene expression signatures in TB show highly similar patterns in SARC, with a common up-regulation of proinflammatory pathways and IFN signaling and close similarity to TB-related signatures. microRNA expression also presented a highly similar pattern in both diseases, whereas cytokines in the serum of TB patients revealed a slightly elevated proinflammatory pattern compared with SARC and controls. Our results indicate several differences in expression between the two diseases, with increased metabolic activity and significantly higher antimicrobial defense responses in TB. However, matrix metallopeptidase 14 was identified as the most distinctive marker of SARC. Described communalities as well as unique signatures in blood profiles of two distinct inflammatory pulmonary diseases not only have considerable implications for the design of TB biosignatures and future diagnosis, but they also provide insights into biological processes underlying chronic inflammatory disease entities of different etiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanopore-based detection of circulating microRNAs in lung cancer patients

            MicroRNAs are short RNA molecules that regulate gene expression. They have been investigated as potential biomarkers because their expression levels are correlated with various diseases. However, the detection of microRNAs in the bloodstream remains difficult because current methods are not sufficiently selective or sensitive. Here, we show that a nanopore sensor based on the alpha-hemolysin protein selectively detected microRNAs at the single molecular level in plasma samples from lung cancer patients without the need for labelling or amplification. The sensor, which used a programmable oligonucleotide probe to generate a target-specific signature signal, was able to quantify sub-picomolar levels of cancer-associated microRNAs and to discriminate single nucleotide differences between microRNA family members. This approach could prove useful for quantitative microRNA detection, biomarker discovery, and the non-invasive early diagnosis of cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human gene expression profiles of susceptibility and resistance in tuberculosis.

              Tuberculosis (TB) still poses a profound burden on global health, owing to significant morbidity and mortality worldwide. Although a fully functional immune system is essential for the control of Mycobacterium tuberculosis infection, the underlying mechanisms and reasons for failure in part of the infected population remain enigmatic. Here, whole-blood microarray gene expression analyses were performed in TB patients and in latently as well as uninfected healthy controls to define biomarkers predictive of susceptibility and resistance. Fc gamma receptor 1B (FCGRIB)was identified as the most differentially expressed gene, and, in combination with four other markers, produced a high degree of accuracy in discriminating TB patients and latently infected donors. We determined differentially expressed genes unique for active disease and identified profiles that correlated with susceptibility and resistance to TB. Elevated expression of innate immune-related genes in active TB and higher expression of particular gene clusters involved in apoptosis and natural killer cell activity in latently infected donors are likely to be the major distinctive factors determining failure or success in controlling M. tuberculosis infection. The gene expression profiles defined in this study provide valuable clues for better understanding of progression from latent infection to active disease and pave the way for defining predictive correlates of protection in TB.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                October 2013
                October 2013
                22 October 2013
                : 10
                : 10
                : e1001538
                Affiliations
                [1 ]Section of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
                [2 ]Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, United Kingdom
                [3 ]Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
                [4 ]Karonga Prevention Study, Chilumba, Karonga District, Malawi
                [5 ]Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
                [6 ]Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
                [7 ]Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
                [8 ]Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
                [9 ]KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
                [10 ]Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
                [11 ]Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
                [12 ]Liverpool School of Tropical Medicine, Liverpool, United Kingdom
                [13 ]Infectious Disease, Genome Institute of Singapore, Singapore
                [14 ]Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
                [15 ]Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
                [16 ]MRC National Institute for Medical Research, London, United Kingdom
                [17 ]Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
                San Francisco General Hospital, University of California San Francisco, United States of America
                Author notes

                ¶ Contributed equally to this work with: Robert J. Wilkinson, Lachlan J. Coin, Michael Levin

                The authors have declared that patent applications have been filed for the Disease Risk score (GB1201766.1) and TB/LTBI and TB/OD signatures (GB1213636.2).

                Conceived and designed the experiments: MK VJW NF STA AJB HMD BE RSH MLH FK PRL MM RJW LJC ML. Performed the experiments: MK VJW TO NB CMB LL FZ. Analyzed the data: MK VJW TO NF ACC RJW LJC ML. Contributed reagents/materials/analysis tools: MLH THO. Wrote the first draft of the manuscript: MK VJW NF RJW LJC ML. Contributed to the writing of the manuscript: MK VJW TO NF ACC HMD RSH RJW LJC ML. ICMJE criteria for authorship read and met: MK VJW TO NF STA NB CMB AJB ACC HMD BE RSH MLH FK PRL LL MM THO FZ RJW LJC ML. Agree with manuscript results and conclusions: MK VJW TO NF STA NB CMB AJB ACC HMD BE RSH MLH FK PRL LL MM THO FZ RJW LJC ML. Enrolled patients: TO NF NB FZ RJW.

                Article
                PMEDICINE-D-12-02926
                10.1371/journal.pmed.1001538
                3805485
                24167453
                e7696d14-30b6-4701-a95b-9da0d2e52b3d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 October 2012
                : 12 September 2013
                Page count
                Pages: 17
                Funding
                The study was funded by an EU Action for Diseases of Poverty program grant (Sante/2006/105-061) and made use of infrastructure and staff at the Wellcome Trust–supported programs in Karonga and University of Cape Town and the Imperial College Centre for Clinical Tropical Medicine. The Karonga Prevention Study is supported by the Wellcome Trust, UK (079828/079827); RSH was supported by the MLW Clinical Research Program Core Grant from the Wellcome Trust, UK (084679/Z/08/Z); RJW and AJB were supported by the Wellcome Trust, UK (084323 and 088316). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Medicine
                Medicine

                Comments

                Comment on this article