9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of the Gut-Liver Axis in Metabolic Dysfunction-Associated Fatty Liver Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The complex interplay between the gut microbiota, the intestinal barrier, the immune system and the liver is strongly influenced by environmental and genetic factors that can disrupt the homeostasis leading to disease. Among the modulable factors, diet has been identified as a key regulator of microbiota composition in patients with metabolic syndrome and related diseases, including the metabolic dysfunction-associated fatty liver disease (MAFLD). The altered microbiota disrupts the intestinal barrier at different levels inducing functional and structural changes at the mucus lining, the intercellular junctions on the epithelial layer, or at the recently characterized vascular barrier. Barrier disruption leads to an increased gut permeability to bacteria and derived products which challenge the immune system and promote inflammation. All these alterations contribute to the pathogenesis of MAFLD, and thus, therapeutic approaches targeting the gut-liver-axis are increasingly being explored. In addition, the specific changes induced in the intestinal flora may allow to characterize distinctive microbial signatures for non-invasive diagnosis, severity stratification and disease monitoring.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.

          Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide. We estimated the global prevalence, incidence, progression, and outcomes of NAFLD and nonalcoholic steatohepatitis (NASH). PubMed/MEDLINE were searched from 1989 to 2015 for terms involving epidemiology and progression of NAFLD. Exclusions included selected groups (studies that exclusively enrolled morbidly obese or diabetics or pediatric) and no data on alcohol consumption or other liver diseases. Incidence of hepatocellular carcinoma (HCC), cirrhosis, overall mortality, and liver-related mortality were determined. NASH required histological diagnosis. All studies were reviewed by three independent investigators. Analysis was stratified by region, diagnostic technique, biopsy indication, and study population. We used random-effects models to provide point estimates (95% confidence interval [CI]) of prevalence, incidence, mortality and incidence rate ratios, and metaregression with subgroup analysis to account for heterogeneity. Of 729 studies, 86 were included with a sample size of 8,515,431 from 22 countries. Global prevalence of NAFLD is 25.24% (95% CI: 22.10-28.65) with highest prevalence in the Middle East and South America and lowest in Africa. Metabolic comorbidities associated with NAFLD included obesity (51.34%; 95% CI: 41.38-61.20), type 2 diabetes (22.51%; 95% CI: 17.92-27.89), hyperlipidemia (69.16%; 95% CI: 49.91-83.46%), hypertension (39.34%; 95% CI: 33.15-45.88), and metabolic syndrome (42.54%; 95% CI: 30.06-56.05). Fibrosis progression proportion, and mean annual rate of progression in NASH were 40.76% (95% CI: 34.69-47.13) and 0.09 (95% CI: 0.06-0.12). HCC incidence among NAFLD patients was 0.44 per 1,000 person-years (range, 0.29-0.66). Liver-specific mortality and overall mortality among NAFLD and NASH were 0.77 per 1,000 (range, 0.33-1.77) and 11.77 per 1,000 person-years (range, 7.10-19.53) and 15.44 per 1,000 (range, 11.72-20.34) and 25.56 per 1,000 person-years (range, 6.29-103.80). Incidence risk ratios for liver-specific and overall mortality for NAFLD were 1.94 (range, 1.28-2.92) and 1.05 (range, 0.70-1.56).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An obesity-associated gut microbiome with increased capacity for energy harvest.

            The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

              A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                16 April 2021
                2021
                16 April 2021
                : 12
                : 660179
                Affiliations
                [1] Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III , Madrid, Spain
                Author notes

                Edited by: Javier Crespo, Marqués de Valdecilla Health Research Institute (IDIVAL), Spain

                Reviewed by: Javier González-Gallego, University of León, Spain; Vanessa Figliuolo da Paz, University of Arizona, United States

                *Correspondence: Agustín Albillos, agustin.albillos@ 123456uah.es

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.660179
                8085382
                33936094
                e74fde6b-b48c-49b6-a0d7-73fd0ab31e0c
                Copyright © 2021 Martín-Mateos and Albillos

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 January 2021
                : 29 March 2021
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 86, Pages: 9, Words: 4506
                Categories
                Immunology
                Mini Review

                Immunology
                gut abnormalities,steatosis,intestinal immunity,intestinal microbiota,metabolic liver disease

                Comments

                Comment on this article