7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbial control of mosquitoes via the use of symbiotic or pathogenic microbes, such as Wolbachia and entomopathogenic fungi, are promising alternatives to synthetic insecticides to tackle the rapid increase in insecticide resistance and vector-borne disease outbreaks. This study evaluated the susceptibility and host responses of two important mosquito vectors, Ae. albopictus and Cx. pipiens, that naturally carry Wolbachia, to infections by entomopathogenic fungi. Our study indicated that while Wolbachia presence did not provide a protective advantage against entomopathogenic fungal infection, it nevertheless influenced the bacterial / fungal load and the expression of select anti-microbial effectors and phenoloxidase cascade genes in mosquitoes. Furthermore, although host responses from Ae. albopictus and Cx. pipiens were mostly similar, we observed contrasting phenotypes with regards to susceptibility and immune responses to fungal entomopathogenic infection in these two mosquitoes. This study provides new insights into the intricate multipartite interaction between the mosquito host, its native symbiont and pathogenic microbes that might be employed to control mosquito populations.

          Author summary

          Control of mosquitoes via the use of microbes is a promising alternative to synthetic insecticides and a potential solution to tackle the rapid evolution of insecticide resistance in mosquitoes. Recently, a parasitic microbe named Wolbachia has been found to render the mosquito resistant to virus infections and it is currently showing great promise in reducing dengue cases on tests conducted in the field. On the other side of the symbiotic spectrum, we have entomopathogenic fungi, who have evolved to naturally infect and kill insects, and offer a unique potential to control mosquito populations. In this study, we examined the effect that native Wolbachia can have on the mosquito susceptibility to fungal entomopathogens. Our findings show that while Wolbachia does not affect the action of entomopathogenic fungi on mosquitoes, it does influence the expression of important mosquito immune genes, suggesting that Wolbachia has a closer interaction with the mosquito response to microbial infections than previously reported. Furthermore, our study provides new records on the susceptibility of two important mosquito vectors in the USA ( Aedes albopictus and Culex pipiens), with Cx. pipiens showing significant resistance to the action of one fungal entomopathogen tested. This article informs on the mosquito susceptibility and interaction with other microbes that will aid in the selection of fungal entomopathogens to control mosquitoes, especially those that carry native microbes such as Wolbachia.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans

            Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya

              The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: InvestigationRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                29 November 2021
                November 2021
                : 15
                : 11
                : e0009984
                Affiliations
                [1 ] USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, Illinois, United States of America
                [2 ] School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
                [3 ] USDA, Agricultural Research Service, Midwest Area, Peoria, Illinois, United States of America
                University of Cambridge, UNITED KINGDOM
                Author notes

                The authors have declared that no competing interests exist.

                [¤]

                Current address: Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America

                Author information
                https://orcid.org/0000-0001-9607-1097
                https://orcid.org/0000-0002-9770-2345
                https://orcid.org/0000-0003-0847-1715
                https://orcid.org/0000-0002-6178-4553
                Article
                PNTD-D-21-01375
                10.1371/journal.pntd.0009984
                8670716
                34843477
                e6d75643-2396-4e78-afe8-ffb4f29a2c86

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 16 September 2021
                : 8 November 2021
                Page count
                Figures: 7, Tables: 3, Pages: 27
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100007917, Agricultural Research Service;
                Award ID: 5010-22410-020-00D
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: 1R15AI124005-01
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: 1R15AI124005-01
                Award Recipient :
                This work was supported in part by the U.S. Department of Agriculture, Agricultural Research Service Project Number 5010-22410-020-00D to JLR. SAJ and GDO were supported by National Institutes of Health grant 1R15AI124005-01 to SAJ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Fungal Diseases
                Biology and Life Sciences
                Organisms
                Bacteria
                Wolbachia
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Species Interactions
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Zoology
                Entomology
                Insects
                Mosquitoes
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Biology and Life Sciences
                Zoology
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Biology and Life Sciences
                Genetics
                Fungal Genetics
                Biology and Life Sciences
                Mycology
                Fungal Genetics
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Fungal Pathogens
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Fungal Pathogens
                Biology and Life Sciences
                Mycology
                Fungal Pathogens
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogenesis
                Host-Pathogen Interactions
                Custom metadata
                vor-update-to-uncorrected-proof
                2021-12-14
                All relevant data are within the manuscript and its Supporting information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article