11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shifting forensic science focus from means to purpose: A path forward for the discipline?

      , ,
      Science & Justice
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Cognitive bias research in forensic science: A systematic review

          The extent to which cognitive biases may influence decision-making in forensic science is an important question with implications for training and practice. We conducted a systematic review of the literature on cognitive biases in forensic science disciplines. The initial literature search including electronic searching of three databases (two social science, one science) and manual review of reference lists in identified articles. An initial screening of title and abstract by two independent reviewers followed by full text review resulted in the identification of 29 primary source (research) studies. A critical methodological deficiency, serious enough to make the study too problematic to provide useful evidence, was identified in two of the studies. Most (n = 22) conducted analyses limited to practitioners (n = 17), forensic science trainees (n = 2), or both forensic science practitioners and students (n = 3); other analyses were based on university student or general population participants. Latent fingerprint analysis was examined in 11 studies, with 1-3 other studies found in 13 other disciplines or domains. This set of studies provides a robust database, with evidence of the influence of confirmation bias on analysts conclusions, specifically among the studies with practitioners or trainees presented with case-specific information about the "suspect" or crime scenario (in 9 of 11 studies examining this question), procedures regarding use of exemplar(s) (in 4 of 4 studies), or knowledge of a previous decision (in 4 of 4 studies). The available research supports the idea of susceptibility of forensic science practitioners to various types of confirmation bias and of the potential value of procedures designed to reduce access to unnecessary information and control the order of providing relevant information, use of multiple comparison samples rather than a single suspect exemplar, and replication of results by analysts blinded to previous results.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Ontogeny of Criminalistics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Error rates in forensic DNA analysis: definition, numbers, impact and communication.

              Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and published. The forensic domain is lagging behind concerning this transparency for various reasons. In this paper we provide definitions and observed frequencies for different types of errors at the Human Biological Traces Department of the Netherlands Forensic Institute (NFI) over the years 2008-2012. Furthermore, we assess their actual and potential impact and describe how the NFI deals with the communication of these numbers to the legal justice system. We conclude that the observed relative frequency of quality failures is comparable to studies from clinical laboratories and genetic testing centres. Furthermore, this frequency is constant over the five-year study period. The most common causes of failures related to the laboratory process were contamination and human error. Most human errors could be corrected, whereas gross contamination in crime samples often resulted in irreversible consequences. Hence this type of contamination is identified as the most significant source of error. Of the known contamination incidents, most were detected by the NFI quality control system before the report was issued to the authorities, and thus did not lead to flawed decisions like false convictions. However in a very limited number of cases crucial errors were detected after the report was issued, sometimes with severe consequences. Many of these errors were made in the post-analytical phase. The error rates reported in this paper are useful for quality improvement and benchmarking, and contribute to an open research culture that promotes public trust. However, they are irrelevant in the context of a particular case. Here case-specific probabilities of undetected errors are needed. These should be reported, separately from the match probability, when requested by the court or when there are internal or external indications for error. It should also be made clear that there are various other issues to consider, like DNA transfer. Forensic statistical models, in particular Bayesian networks, may be useful to take the various uncertainties into account and demonstrate their effects on the evidential value of the forensic DNA results.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Science & Justice
                Science & Justice
                Elsevier BV
                13550306
                November 2021
                November 2021
                : 61
                : 6
                : 678-686
                Article
                10.1016/j.scijus.2021.08.005
                34802641
                e63ecca3-86d5-4c6f-bdb7-7668f1438a81
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article