1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fabrication of Micro‐Mesopores on Spiral Carbon Nanocoils and Simultaneous Doping with Oxygen to Expand Microwave Absorption Bandwidth

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exceptional benefits of structural defects and doped atoms in carbon network regarding electromagnetic properties inspire the design of advanced carbon‐based microwave absorption (MA) materials. However, excessive structural defects decline the physical properties of materials, especially their conductivity. Therefore, it is a great challenge to balance structural defects and doped atoms to optimize conductive behavior for carbon‐based MA materials. The spiral carbon nanocoil (CNC), with coexisting amorphous and polycrystalline carbon structures and moderate conductivity, has significant MA properties but lacks pores and doped atoms. Herein, the amorphous carbon parts with relatively weak C─C bond energies are preferentially oxidized at 500 °C in air atmosphere to create pores and combine O atoms in the bodies of CNCs. Furthermore, the mechanism prioritizing the formation of O doping over defects is discovered. Benefiting from the synergistic interplay of structural defects and O dopants, the O‐enriched porous CNCs demonstrate enhanced conduction and polarization losses than the pure CNCs, realizing a wide effective absorption bandwidth of 7.3 GHz at a filling ratio of only 3 wt.%. Theoretical calculations further support these experimental results. The combination of structural defects and doped atoms may serve as an effective pathway for unlocking tunable dielectric properties of carbon‐based materials.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption.

          The synthesis of CoNi@SiO2 @TiO2 core-shell and CoNi@Air@TiO2 yolk-shell microspheres is reported for the first time. Owing to the magnetic-dielectric synergistic effect, the obtained CoNi@SiO2 @TiO2 microspheres exhibit outstanding microwave absorption performance with a maximum reflection loss of -58.2 dB and wide bandwidth of 8.1 GHz (8.0-16.1 GHz, < -10 dB).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam.

            The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                December 2024
                August 06 2024
                December 2024
                : 34
                : 51
                Affiliations
                [1 ] School of Physics Dalian University of Technology Dalian Liaoning 116024 China
                Article
                10.1002/adfm.202410224
                e5c6d332-af73-47b6-83ff-57eef53c2995
                © 2024

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article