4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Thromboprophylaxis: balancing evidence and experience during the COVID-19 pandemic

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A common and potent consideration has recently entered the landscape of the novel coronavirus disease of 2019 (COVID-19): venous thromboembolism (VTE). COVID-19 has been associated to a distinctive related coagulopathy that shows unique characteristics. The research community has risen to the challenges posed by this « evolving COVID-19 coagulopathy » and has made unprecedented efforts to promptly address its distinct characteristics. In such difficult time, both national and international societies of thrombosis and hemostasis released prompt and timely responses to guide recognition and management of COVID-19-related coagulopathy. However, latest guidelines released by the international Society on Thrombosis and Haemostasis (ISTH) on May 27, 2020, followed the American College of Chest Physicians (CHEST) on June 2, 2020 showed some discrepancies regarding thromboprophylaxis use. In this forum article, we would like to offer an updated focus on thromboprophylaxis with current incidence of VTE in ICU and non-ICU patients according to recent published studies; highlight the main differences regarding ISTH and CHEST guidelines; summarize and describe which are the key ongoing RCTs testing different anticoagulation strategies in patients with COVID-19; and finally set a proposal for COVID-19 coagulopathy specific risk factors and dedicated trials.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Characteristics of Coronavirus Disease 2019 in China

          Abstract Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial cell infection and endotheliitis in COVID-19

            Cardiovascular complications are rapidly emerging as a key threat in coronavirus disease 2019 (COVID-19) in addition to respiratory disease. The mechanisms underlying the disproportionate effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities, however, remain incompletely understood.1, 2 SARS-CoV-2 infects the host using the angiotensin converting enzyme 2 (ACE2) receptor, which is expressed in several organs, including the lung, heart, kidney, and intestine. ACE2 receptors are also expressed by endothelial cells. 3 Whether vascular derangements in COVID-19 are due to endothelial cell involvement by the virus is currently unknown. Intriguingly, SARS-CoV-2 can directly infect engineered human blood vessel organoids in vitro. 4 Here we demonstrate endothelial cell involvement across vascular beds of different organs in a series of patients with COVID-19 (further case details are provided in the appendix). Patient 1 was a male renal transplant recipient, aged 71 years, with coronary artery disease and arterial hypertension. The patient's condition deteriorated following COVID-19 diagnosis, and he required mechanical ventilation. Multisystem organ failure occurred, and the patient died on day 8. Post-mortem analysis of the transplanted kidney by electron microscopy revealed viral inclusion structures in endothelial cells (figure A, B ). In histological analyses, we found an accumulation of inflammatory cells associated with endothelium, as well as apoptotic bodies, in the heart, the small bowel (figure C) and lung (figure D). An accumulation of mononuclear cells was found in the lung, and most small lung vessels appeared congested. Figure Pathology of endothelial cell dysfunction in COVID-19 (A, B) Electron microscopy of kidney tissue shows viral inclusion bodies in a peritubular space and viral particles in endothelial cells of the glomerular capillary loops. Aggregates of viral particles (arrow) appear with dense circular surface and lucid centre. The asterisk in panel B marks peritubular space consistent with capillary containing viral particles. The inset in panel B shows the glomerular basement membrane with endothelial cell and a viral particle (arrow; about 150 nm in diameter). (C) Small bowel resection specimen of patient 3, stained with haematoxylin and eosin. Arrows point to dominant mononuclear cell infiltrates within the intima along the lumen of many vessels. The inset of panel C shows an immunohistochemical staining of caspase 3 in small bowel specimens from serial section of tissue described in panel D. Staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections, indicating that apoptosis is induced in a substantial proportion of these cells. (D) Post-mortem lung specimen stained with haematoxylin and eosin showed thickened lung septa, including a large arterial vessel with mononuclear and neutrophilic infiltration (arrow in upper inset). The lower inset shows an immunohistochemical staining of caspase 3 on the same lung specimen; these staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections. COVID-19=coronavirus disease 2019. Patient 2 was a woman, aged 58 years, with diabetes, arterial hypertension, and obesity. She developed progressive respiratory failure due to COVID-19 and subsequently developed multi-organ failure and needed renal replacement therapy. On day 16, mesenteric ischaemia prompted removal of necrotic small intestine. Circulatory failure occurred in the setting of right heart failure consequent to an ST-segment elevation myocardial infarction, and cardiac arrest resulted in death. Post-mortem histology revealed lymphocytic endotheliitis in lung, heart, kidney, and liver as well as liver cell necrosis. We found histological evidence of myocardial infarction but no sign of lymphocytic myocarditis. Histology of the small intestine showed endotheliitis (endothelialitis) of the submucosal vessels. Patient 3 was a man, aged 69 years, with hypertension who developed respiratory failure as a result of COVID-19 and required mechanical ventilation. Echocardiography showed reduced left ventricular ejection fraction. Circulatory collapse ensued with mesenteric ischaemia, and small intestine resection was performed, but the patient survived. Histology of the small intestine resection revealed prominent endotheliitis of the submucosal vessels and apoptotic bodies (figure C). We found evidence of direct viral infection of the endothelial cell and diffuse endothelial inflammation. Although the virus uses ACE2 receptor expressed by pneumocytes in the epithelial alveolar lining to infect the host, thereby causing lung injury, the ACE2 receptor is also widely expressed on endothelial cells, which traverse multiple organs. 3 Recruitment of immune cells, either by direct viral infection of the endothelium or immune-mediated, can result in widespread endothelial dysfunction associated with apoptosis (figure D). The vascular endothelium is an active paracrine, endocrine, and autocrine organ that is indispensable for the regulation of vascular tone and the maintenance of vascular homoeostasis. 5 Endothelial dysfunction is a principal determinant of microvascular dysfunction by shifting the vascular equilibrium towards more vasoconstriction with subsequent organ ischaemia, inflammation with associated tissue oedema, and a pro-coagulant state. 6 Our findings show the presence of viral elements within endothelial cells and an accumulation of inflammatory cells, with evidence of endothelial and inflammatory cell death. These findings suggest that SARS-CoV-2 infection facilitates the induction of endotheliitis in several organs as a direct consequence of viral involvement (as noted with presence of viral bodies) and of the host inflammatory response. In addition, induction of apoptosis and pyroptosis might have an important role in endothelial cell injury in patients with COVID-19. COVID-19-endotheliitis could explain the systemic impaired microcirculatory function in different vascular beds and their clinical sequelae in patients with COVID-19. This hypothesis provides a rationale for therapies to stabilise the endothelium while tackling viral replication, particularly with anti-inflammatory anti-cytokine drugs, ACE inhibitors, and statins.7, 8, 9, 10, 11 This strategy could be particularly relevant for vulnerable patients with pre-existing endothelial dysfunction, which is associated with male sex, smoking, hypertension, diabetes, obesity, and established cardiovascular disease, all of which are associated with adverse outcomes in COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia

              Abstract Background In the recent outbreak of novel coronavirus infection in Wuhan, China, significantly abnormal coagulation parameters in severe novel coronavirus pneumonia (NCP) cases were a concern. Objectives To describe the coagulation feature of patients with NCP. Methods Conventional coagulation results and outcomes of 183 consecutive patients with confirmed NCP in Tongji hospital were retrospectively analyzed. Results The overall mortality was 11.5%, the non‐survivors revealed significantly higher D‐dimer and fibrin degradation product (FDP) levels, longer prothrombin time and activated partial thromboplastin time compared to survivors on admission (P < .05); 71.4% of non‐survivors and 0.6% survivors met the criteria of disseminated intravascular coagulation during their hospital stay. Conclusions The present study shows that abnormal coagulation results, especially markedly elevated D‐dimer and FDP are common in deaths with NCP.
                Bookmark

                Author and article information

                Contributors
                olivier.morel@chru-strasbourg.fr
                Journal
                J Thromb Thrombolysis
                J. Thromb. Thrombolysis
                Journal of Thrombosis and Thrombolysis
                Springer US (New York )
                0929-5305
                1573-742X
                21 July 2020
                : 1-10
                Affiliations
                [1 ]GRID grid.412220.7, ISNI 0000 0001 2177 138X, Division of Cardiovascular Medicine, Nouvel Hôpital Civil, , Strasbourg University Hospital, ; 1 place de l’Hôpital, 67000 Strasbourg, France
                [2 ]INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, 67000 Strasbourg, France
                Author information
                http://orcid.org/0000-0001-7034-1466
                Article
                2231
                10.1007/s11239-020-02231-3
                7372740
                32696172
                e44f31c4-19ea-408e-9c75-56729aef3370
                © Springer Science+Business Media, LLC, part of Springer Nature 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article

                Hematology
                covid-19,coronavirus,thromboprophylaxis,venous thromboembolism,guidelines
                Hematology
                covid-19, coronavirus, thromboprophylaxis, venous thromboembolism, guidelines

                Comments

                Comment on this article